- 【数据结构】常见八大排序算法
爱吃香菜¹
数据结构数据结构排序算法算法java
目录插入排序1、直接插入排序:2、希尔排序选择排序1、直接选择排序:2、堆排序交换排序1、冒泡排序2、快速排序2.2挖坑法2.1hoare版本2.3前后指针法2.4快排非递归版归并排序1、归并排序递归版2、归并排序非递归计数排序排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,这里八大排序就是内部排序,指直接插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序。
- 从零开始:在服务器上部署大模型并集成到 vscode +Cline使用
一个正经的AI
服务器vscode运维AI编程
1.引言(Introduction)欢迎来到本篇技术博客!在本文中,我将引导你一步一步地在阿里云服务器上部署Qwen大模型,并将其集成到Cline插件中。我们将从零开始,详细介绍每个步骤,确保即使是初学者也能轻松上手。近年来,大型语言模型(LLMs)展现出了强大的自然语言处理能力,吸引了越来越多的关注。Qwen系列模型是阿里巴巴开源的一系列强大的大语言模型,具有优秀的性能和广泛的应用场景。Olla
- 七大设计原则之里氏替换原则
拙野
设计模式里氏替换原则java
目录一、什么是里氏替换原则?二、里氏替换原则的应用三、不符合里氏替换原则的情况一、什么是里氏替换原则?里氏替换原则,英文叫LiskovSubstitutionPrinciple,简称LSP(老色皮,哈哈)。里氏替换原则,其实是没有我们前面,说的SRP和OCP比较见名知意一些。根据他们两个的中文名称,我们都很容易联想到他的定义。比如,单一职责原则,就是一个类或者模块只负责一个职责。而开闭原则,根据名
- 5分钟搞定Spring AI支持SpringBoot快速构建人工智能AI应用_springai_springboot_AI应用
web17886480312
spring人工智能springboot
通过阅读这篇文章,你将了解SpringAI,它是一个借鉴了langchain的设计理念,并结合Java的优势,为开发者提供易于替换实现的统一接口。此外,文章还基于SpringAI的模型调用和Prompt模板,构建一个可操作的示例,让你可以快速的了解具体怎么在springboot的环境下使用springai来构建人工智能AI的应用SpringAI:简化Java大模型集成的统一框架在Java调用大模型
- 超全性能调优标准制定指南,你一定不能错过!
人工智能
0前言我有个朋友说他们国企的系统从未性能调优,功能测试完就上线,线上也没性能问题,何必还做性能调优?本文搞清:为什么要做性能调优?啥时开始做?做性能调优是不是有标准?1为啥做性能调优?有些性能问题是慢慢产生,到了时间就自爆更多性能问题是由访问量波动导致,如活动或公司产品用户量上升也可能一款产品上线后就半死不活,一直没有大访问量,所以还没有引发这颗定时炸弹现在假设你的系统要做一次活动,老板告诉你预计
- Next.js服务器操作:优势、局限与审慎应用
exploration-earth
javascript服务器开发语言
类似于任何技术,它们亦非尽善尽美,故而保持警觉至关重要。通过亲身经历中的挫折汲取了教训,现将之与诸位共勉。一大诟病在于潜在的紧密绑定问题。若服务器端代码嵌入组件之中,则可能导致代码库模块化程度削弱,维护成本攀升。后端逻辑的任何变动或许都将迫使前端相应更新,反之亦然。对于追求关注点严格分离的大型项目或团队而言,这无疑构成了严峻挑战。唯有秉持严谨的纪律与条理,方能避免代码库陷入混乱。再者,便是学习曲线
- Python 实现七大排序算法
weixin_30527323
pythonshell数据结构与算法
技术博客:github.com/yongxinz/te…本文用Python实现了插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序。先整体看一下各个算法之间的对比,然后再进行详细介绍:排序算法平均时间复杂度最好情况最坏情况空间复杂度排序方式稳定性插入排序O(n²)O(n)O(n²)O(1)In-place稳定冒泡排序O(n²)O(n)O(n²)O(1)In-place稳定选择排
- ChatGPT大模型极简应用开发-目录
uncle_ll
#GPTchatgpt人工智能LLM大模型GPT
引言要理解ChatGPT,了解其背后的Transformer架构和GPT技术一路的演进则变得非常必要。ChatGPT背后的LLM技术使普通人能够通过自然语言完成过去只能由程序员通过编程语言实现的任务,这是一场巨大的变革。然而,人类通常容易高估技术的短期影响而低估长期影响。进一步学习关于LLM技术原理的论文、视频、图书等。在阅读这本书或者后续学习过程中,你有任何疑问都可以随时请教ChatGPT等工具
- 【大模型】Spring AI Alibaba 对接百炼平台大模型使用详解
小码农叔叔
AI大模型实战与应用微服务治理与实战springaiSpringAI详解百炼大模型
目录一、前言二、SpringAI概述2.1springai是什么2.2SpringAI核心能力2.3SpringAI应用场景三、SpringAIAlibaba介绍3.1SpringAIAlibaba是什么3.2SpringAIAlibaba核心特点3.3SpringAIAlibaba应用场景四、SpringBoot对接SpringAIAlibaba过程4.1前置准备4.1.1获取apikey4.1
- 思维图GOT:用大语言模型解决复杂问题
硅谷秋水
大模型人工智能机器学习语言模型人工智能自然语言处理
23年8月份来自瑞士和波兰的大学以及一个数据公司Cledar的大语言模型论文“GraphofThoughts:SolvingElaborateProblemswithLargeLanguageModels“。思维图(GoT)是一个框架,提高大型语言模型(LLM)中的提示功能,超出思维链或思维树(ToT)等范式所提供的能力。GoT的关键思想和主要优势是能够将LLM生成的信息建模为任意图,其中信息单位
- 1.Spring AI 从入门到实践
laopeng301
SpringAIspring人工智能java
SpringAI从入门到实践1.什么是SpringAI2.使用SpringBoot&SpringAI快速构建AI应用程序3.ChatClient&ChatModel简化与AI模型的交互4.SpringAIPrompt:与大模型进行有效沟通5.结构化输出大模型响应6.实战:AI聊天机器人Ben技术站关注Java技术,LLM,计算机科学等内容。关注会持续更新推送详细教程内容和源码。
- 关于 PHP 性能优化
很青的青蛙
phpphpphp性能优化
本文写的也是关于PHP性能优化、减少耗时方面的话题,虽然老生常谈,但还是以我的角度来一个总结或分享。网上关于50条PHP优化的方法,除此之外从架构或环境方面的优化建议等,是非常有益的。本文讲讲我所关注的一些方法或建议。一般来说,性能优化可先从大的方向开始考虑,从对影响性能比较大的因素来考虑,比如现在使用PHP5.7,性能据说可以成倍提高,最后考虑的应该是PHP语法细节上。1.PHP部署环境单台服务
- Spring 开发必备:深入解析 Spring Bean 的六大作用域
码农技术栈
spring后端微服务springcloudspringboot
SpringBean一共有六种作用域,我们可以将它们比作是不同场景下的“服务助手”。1.单例作用域(Singleton):•就像餐厅里只有一个“领班助手”,无论顾客多少次呼唤,来的都是同一位助手。•在Spring容器中,单例作用域的Bean也只会有一个实例,无论在哪里获取,都是同一个对象。•适用于无状态的Bean,如数据库连接池等。2.原型作用域(Prototype):•就像餐厅里每次顾客呼唤都会
- HiveMetaException: Unknown version specified for initialization: 3.1.0(或者其他版本号)
一品_人生
mysqlhive大数据
遇到这个问题,也是很难发现的,查阅很多文章,乱七八糟,也可能是遇到的问题不相同吧,我们从以下两个方面去排查吧1.检查你的hive-site.xml和hive-env.sh,配置对就行,这个网上一大片,注意要正确。2.那就是你解压的hive压缩文件,然后发现要安装mysql,这时你会先检查你本地有没有mysql,使用find/-namemysql(罪源),然后你就一通删除,你没有发现你删除了一个hi
- 文心一言 vs gpt-4 全面横向比较
周盛欢
文心一言
文心一言是中国百度公司研发的大规模语言模型,它有超多的参数,就像一个超级大脑,特别擅长理解并生成中文内容。在聊天啊、写文章啊、答题这些任务上表现不错,对中国文化和国情有更深的理解和适应能力。GPT-3.5是OpenAI公司的上一代大模型,比GPT-3更智能一些。而GPT-4作为其升级版,大家预计它会有更大的模型参数量,更强的学习和推理能力,可能会在各种语言任务上实现更大突破。所以,如果拿文心一言跟
- 【论文速读】| 利用大语言模型在灰盒模糊测试中生成初始种子
云起无垠
论文速读/精读语言模型p2p人工智能
基本信息论文标题:HarnessingLargeLanguageModelsforSeedGenerationinGreyb0xFuzzing作者:WenxuanShi,YunhangZhang,XinyuXing,JunXu作者单位:NorthwesternUniversity,UniversityofUtah关键词:Greyb0xfuzzing,LargeLanguageModels,Seed
- 第79期 | GPTSecurity周报
云起无垠
GPTSecurityAIGCgpt
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 第60期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能语言模型网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.映射你的模型:评估
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 大语言模型(LLMs)入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
大模型零基础教程
语言模型人工智能自然语言处理大模型
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- Flink 常见面试题
知否&知否
flink大数据kafka
1、Flink的四大特征(基石)checkpoint:基于Chandy-Lamport算法,实现了分布式一致性快照,提供了一致性的语义。State:丰富的StateAPI。ValueState,ListState,MapState,BroadcastState.Time:实现了Watemark机制,乱序数据处理,迟到数据容忍。Window:开箱即用的滚动、滑动、会话窗口。以及灵活的自定义窗口。2、
- 1.4走向不同:GPT 与 BERT 的选择——两大NLP模型的深度解析
少林码僧
AI大模型应用实战专栏自然语言处理gptbert
走向不同:GPT与BERT的选择——两大NLP模型的深度解析在自然语言处理(NLP)领域,GPT(GenerativePretrainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)无疑是最具代表性和影响力的两个模型。它们都基于Transformer架构,但在设计理念、任务应用和训练方式等方面存在显著差
- 第83期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- 大模型prompt提示工程案例
数研妙手
AI技术实践prompt人工智能
一、明确目标和任务在设计Prompt之前,首先要明确你的目标是什么,是文本生成、信息提取、问答、翻译,还是其他任务。例如,如果是文本生成任务,要确定生成的文本类型,如故事、新闻报道、产品描述等。二、Prompt的基本结构指令部分:清晰明确地说明你希望大模型执行的任务。输入部分:提供必要的输入信息,以便大模型理解上下文。约束部分(可选):为大模型的输出设定限制,如字数、格式、语言等。三、设计原则清晰
- 2025 年最好的谷歌地图数据采集软件推荐
后端
2024年,谷歌地图抓取已成为企业和研究人员的一大变革。凭借不断更新的餐厅、酒店、药店等数据库,谷歌地图提供了大量信息。通过使用正确的谷歌地图抓取工具,您可以解锁有价值的见解,以进行潜在客户生成、市场研究和竞争分析。最好的谷歌地图抓取工具使您能够自动收集数据,节省时间和资源,同时确保准确性。无论您是想分析竞争对手还是扩大客户群,这些工具都能为您提供成功所需的优势。关键要点谷歌地图抓取工具可以访问有
- C语言魔法秀:代码中的“隐藏技能”大揭秘!从位运算到联合体的奇幻之旅
firdawn
c语言算法开发语言
掌握一些有创意和想法的编程技巧对于提升编程能力和写出高效、优雅的代码至关重要。以下是一些我分享的C语言编程技巧,它们不仅深入而且能够增加编程效率。1.利用位运算优化性能C语言中的位运算是一种非常强大的工具,可以用于高效地处理整数数据。通过位运算,我们可以实现快速的数值计算、状态标记和数据压缩。例如,使用位与(&)和位或(|)运算可以高效地合并和分离标志位,使用位移(>)运算可以快速地进行数值的乘除
- lineage os android 9,LineageOS 16.0 发布,基于 Android 9
哈里叔叔
lineageosandroid9
自源自CyanogenMod的社区项目LineageOS开始向部分型号手机推出基于Android9的16.0。8月份以来,LineageOS一直在努力将独特功能移植到这个新版本的Android上。由于在上一个版本中进行了大量的清理和重构,这次能够更多地关注特性和可靠性;特别是,隐私保护和su插件都得到了相当大的改进。通过对StylesAPI进行一些细微更改,它现在与Android中最终成为默认实现
- 浅谈滤波中Q和R的调整——KF第三篇笔记
MATLAB卡尔曼
卡尔曼专题免费专栏开发语言kalman卡尔曼滤波算法
前段时间收到私信和email,问我关于Q和R怎么取、如何调。前面说过p0和x0怎么找的问题,Q和R怎么找还没有说过,这里就简单探讨一下。Q和R的意义Q值为过程噪声,越小系统越容易收敛,表示对模型预测的值信任度越高;但是太小则容易发散,如果Q为零,那么我们只相信预测值;Q值越大表示对于预测的信任度就越低,而对测量值的信任度就变高;如果Q值无穷大,那么则表示信任测量值。R值为测量噪声。R太大,滤波的响
- 2019-Android-高级面试题总结-从java语言到AIDL使用与原理
2401_89790831
androidjava开发语言
4.通过线程池线程池的工作原理:线程池可以减少创建和销毁线程的次数,从而减少系统资源的消耗,当一个任务提交到线程池时a.首先判断核心线程池中的线程是否已经满了,如果没满,则创建一个核心线程执行任务,否则进入下一步b.判断工作队列是否已满,没有满则加入工作队列,否则执行下一步c.判断线程数是否达到了最大值,如果不是,则创建非核心线程执行任务,否则执行饱和策略,默认抛出异常###说下handler原理
- docker 与K8s的恩怨情仇
慧香一格
dockerK8s容器dockerkubernetes容器
Docker和Kubernetes(通常简称为K8s)是容器化和容器编排领域的两大重要工具,它们在技术生态中扮演着不同的角色,并且有着密切的关系。虽然有时候人们会讨论它们之间的关系,但实际上它们更多的是互补而不是对立。下面详细探讨Docker与Kubernetes的关系及其各自的优劣势。Docker什么是Docker?Docker是一个开源的平台,用于自动化应用程序的部署、扩展和管理。它允许开发者
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数