tf.nn.conv2d

【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/zuolixiangfisher/article/details/80528989

最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解。google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了。

方法定义

tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

参数:
  • input : 输入的要做卷积的图片,要求为一个张量,shape为 [ batch, in_height, in_weight, in_channel ],其中batch为图片的数量,in_height 为图片高度,in_weight 为图片宽度,in_channel 为图片的通道数,灰度图该值为1,彩色图为3。(也可以用其它值,但是具体含义不是很理解)
  • filter: 卷积核,要求也是一个张量,shape为 [ filter_height, filter_weight, in_channel, out_channels ],其中 filter_height 为卷积核高度,filter_weight 为卷积核宽度,in_channel 是图像通道数 ,和 input 的 in_channel 要保持一致,out_channel 是卷积核数量。
  • strides: 卷积时在图像每一维的步长,这是一个一维的向量,[ 1, strides, strides, 1],第一位和最后一位固定必须是1
  • padding: string类型,值为“SAME” 和 “VALID”,表示的是卷积的形式,是否考虑边界。"SAME"是考虑边界,不足的时候用0去填充周围,"VALID"则不考虑
  • use_cudnn_on_gpu: bool类型,是否使用cudnn加速,默认为true

具体实现

import tensorflow as tf
# case 1
# 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 1*1 大小,数量是1
# 步长是[1,1,1,1]最后得到一个 3*3 的feature map # 1张图最后输出就是一个 shape为[1,3,3,1] 的张量 input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([1,1,5,1])) op1 = tf.nn.conv2d(input, filter, strides=[1,1,1,1], padding='SAME') # case 2 # 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 2*2 大小,数量是1 # 步长是[1,1,1,1]最后得到一个 3*3 的feature map # 1张图最后输出就是一个 shape为[1,3,3,1] 的张量 input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([2,2,5,1])) op2 = tf.nn.conv2d(input, filter, strides=[1,1,1,1], padding='SAME') # case 3 # 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1 # 步长是[1,1,1,1]最后得到一个 1*1 的feature map (不考虑边界) # 1张图最后输出就是一个 shape为[1,1,1,1] 的张量 input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op3 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID') # case 4 # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1 # 步长是[1,1,1,1]最后得到一个 3*3 的feature map (不考虑边界) # 1张图最后输出就是一个 shape为[1,3,3,1] 的张量 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op4 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID') # case 5 # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1 # 步长是[1,1,1,1]最后得到一个 5*5 的feature map (考虑边界) # 1张图最后输出就是一个 shape为[1,5,5,1] 的张量 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op5 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME') # case 6 # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7 # 步长是[1,1,1,1]最后得到一个 5*5 的feature map (考虑边界) # 1张图最后输出就是一个 shape为[1,5,5,7] 的张量 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op6 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME') # case 7 # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7 # 步长是[1,2,2,1]最后得到7个 3*3 的feature map (考虑边界) # 1张图最后输出就是一个 shape为[1,3,3,7] 的张量 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op7 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME') # case 8 # 输入是10 张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7 # 步长是[1,2,2,1]最后每张图得到7个 3*3 的feature map (考虑边界) # 10张图最后输出就是一个 shape为[10,3,3,7] 的张量 input = tf.Variable(tf.random_normal([10,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op8 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME') init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) print('*' * 20 + ' op1 ' + '*' * 20) print(sess.run(op1)) print('*' * 20 + ' op2 ' + '*' * 20) print(sess.run(op2)) print('*' * 20 + ' op3 ' + '*' * 20) print(sess.run(op3)) print('*' * 20 + ' op4 ' + '*' * 20) print(sess.run(op4)) print('*' * 20 + ' op5 ' + '*' * 20) print(sess.run(op5)) print('*' * 20 + ' op6 ' + '*' * 20) print(sess.run(op6)) print('*' * 20 + ' op7 ' + '*' * 20) print(sess.run(op7)) print('*' * 20 + ' op8 ' + '*' * 20) print(sess.run(op8)) 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
# 运行结果

******************** op1 ******************** [[[[ 0.78366613] [-0.11703026] [ 3.533338 ]] [[ 3.4455981 ] [-2.40102 ] [-1.3336506 ]] [[ 1.9816184 ] [-3.3166158 ] [ 2.0968733 ]]]] ******************** op2 ******************** [[[[-4.429776 ] [ 4.1218996 ] [-4.1383405 ]] [[ 0.4804101 ] [ 1.3983132 ] [ 1.2663789 ]] [[-1.8450742 ] [-0.02915052] [-0.5696235 ]]]] ******************** op3 ******************** [[[[-6.969367]]]] ******************** op4 ******************** [[[[ -2.9217496 ] [ 4.4683943 ] [ 7.5761824 ]] [[-14.627491 ] [ -5.014709 ] [ -3.4593797 ]] [[ 0.45091882] [ 4.8827124 ] [ -9.658895 ]]]] ******************** op5 ******************** [[[[-2.8486536 ] [ 1.3990458 ] [ 2.953944 ] [-6.007198 ] [ 5.089696 ]] [[-0.20283715] [ 2.4726171 ] [ 6.2137847 ] [-0.38609552] [-1.8869443 ]] [[ 7.7240233 ] [10.6962805 ] [-3.1667676 ] [-3.6487846 ] [-2.2908094 ]] [[-9.00223 ] [ 4.5111785 ] [ 2.5615098 ] [-5.8492236 ] [ 1.7734764 ]] [[ 2.3674765 ] [-5.9122458 ] [ 5.867611 ] [-0.50353 ] [-4.890904 ]]]] ******************** op6 ******************** [[[[-4.06957626e+00 5.69651246e-01 2.97890633e-01 -5.08075190e+00 2.76357365e+00 -7.34121323e+00 -2.09436584e+00] [-9.03515625e+00 -8.96854973e+00 -4.40316677e+00 -3.23745847e+00 -3.56242275e+00 3.67262197e+00 2.59603453e+00] [ 1.25131302e+01 1.30267200e+01 2.25630283e+00 3.31285048e+00 -1.00396938e+01 -9.06786323e-01 -7.20120049e+00] [-3.18641067e-01 -7.66135693e+00 5.02029419e+00 -1.65469778e+00 -5.53000355e+00 -4.76842117e+00 4.98133230e+00] [ 3.68885136e+00 2.54145473e-01 -4.17096436e-01 1.20136106e+00 -2.29291725e+00 6.98313904e+00 4.92819786e-01]] [[ 1.22962761e+01 3.85902214e+00 -2.91524696e+00 -6.89016438e+00 3.35520816e+00 -1.85112596e+00 5.59113741e+00] [ 2.99087334e+00 4.42690086e+00 -3.34755349e+00 -7.41521478e-01 3.65099478e+00 -2.84761238e+00 -2.74149513e+00] [-9.65088654e+00 -4.91817188e+00 3.82093906e+00 -5.72443676e+00 1.43630829e+01 5.11133957e+00 -1.18163595e+01] [ 1.69606721e+00 -1.00837049e+01 9.65112305e+00 3.48559356e+00 4.71356201e+00 -2.74463081e+00 -5.76961470e+00] [-5.11555862e+00 1.06215849e+01 1.97274566e+00 -1.66155469e+00 5.40411043e+00 1.64753020e+00 -2.25898552e+00]] [[ 3.20135975e+00 1.16082029e+01 6.35383892e+00 -1.22541785e+00 -7.81781197e-01 -7.39507914e+00 3.02070093e+00] [ 3.37887239e+00 -3.17085648e+00 8.15050030e+00 9.17820644e+00 -5.42563820e+00 -1.06148596e+01 1.44039564e+01] [ 6.06520414e+00 -6.89214110e-01 1.18828654e+00 6.44250536e+00 -3.90648508e+00 -7.45609093e+00 1.70780718e-02] [-5.51369572e+00 -5.99862814e-01 -5.97459745e+00 5.03705800e-01 -4.89957094e-01 4.65023327e+00 6.97832489e+00] [ 5.56566572e+00 3.15251064e+00 4.23309374e+00 4.58887959e+00 1.11150384e+00 1.56815052e-01 -2.64446616e+00]] [[-3.47755957e+00 -2.51347685e+00 5.07092476e+00 -1.79448032e+01 1.23025656e+00 -7.04272604e+00 -3.11969209e+00] [-3.64519453e+00 -2.48672795e+00 1.45192409e+00 -7.42938709e+00 7.32508659e-01 1.73417020e+00 -8.84127915e-01] [ 4.80518007e+00 -1.00521259e+01 -1.47410703e+00 -2.73861027e+00 -6.11766815e+00 5.89801645e+00 7.41809845e+00] [ 1.52897854e+01 3.40052223e+00 -1.17849231e-01 8.11421871e+00 -7.15329647e-02 -8.57025623e+00 -6.36894524e-01] [-1.29184561e+01 -2.07097292e+00 6.51137114e+00 4.45195580e+00 6.51636696e+00 1.94592953e-01 7.76367307e-01]] [[-7.64904690e+00 -4.64357853e+00 -5.09730625e+00 1.46977997e+00 -2.66898251e+00 6.18280554e+00 7.30443239e+00] [ 3.74768376e-02 8.19200230e+00 -2.99126768e+00 -1.25706446e+00 2.82602859e+00 4.79209185e-01 -7.99170971e+00] [-9.31276321e+00 2.71563363e+00 2.68426132e+00 -2.98767281e+00 2.85978794e-01 5.26730251e+00 -6.51313114e+00] [-5.16205406e+00 -3.73660684e+00 -1.25655127e+00 -4.03212357e+00 -2.34876966e+00 3.49581933e+00 3.21578264e-01] [ 4.80592680e+00 -2.01916337e+00 -2.70319057e+00 9.14705086e+00 3.14293051e+00 -5.12257957e+00 1.87513745e+00]]]] ******************** op7 ******************** [[[[ -5.3398733 4.176247 -1.0400615 1.7490227 -2.3762708 -4.43866 -2.9152555 ] [ -6.2849035 2.9156108 2.2420614 3.0133455 2.697643 -1.2664369 2.2018924 ] [ -1.7367094 -2.6707978 -4.823809 -2.9799473 -2.588249 -0.8573512 0.7243177 ]] [[ 9.770168 -6.0919194 -7.755929 0.7116828 4.696847 -1.5403405 -10.603018 ] [ -2.2849545 7.23973 0.06859291 -0.3011052 -7.885673 -4.7223825 -1.2202084 ] [ -1.7584102 -0.9349402 1.8078477 6.8720684 11.548839 -1.3058915 1.785974 ]] [[ 3.8749192 -5.9033284 1.3921509 -2.68101 5.386052 5.2535496 7.804141 ] [ 1.9598813 -6.1589165 0.9447456 0.06089067 -3.7891803 -2.0653834 -2.60965 ] [ -2.1243367 -0.9703847 1.5366316 5.8760977 -3.697129 6.050654 -0.01914603]]]] ******************** op8 ******************** [[[[ 7.6126375 -2.261326 0.32292777 8.602917 -2.9009488 3.3160565 2.1506643 ] [ -3.5364501 -2.1440878 1.354662 5.531647 -1.4339367 5.1957445 -0.9030779 ] [ 7.844642 -6.1276717 7.7938704 -2.23364 -3.4782376 -5.097751 5.285432 ]] [[ -1.6915132 2.2787857 -5.9708385 8.21313 -4.5076394 -0.3270775 -8.479343 ] [ 2.0611243 3.1743298 -0.53598183 -3.0830724 -13.820877 5.3642063 -4.0782714 ] [ -2.2280676 -6.232974 6.031793 6.4705186 1.1858556 -5.012024 -0.12968755]] [[ -2.7237153 -2.0637414 1.4018252 -2.937191 2.572178 3.9408593 2.605546 ] [ -1.607345 5.66703 -4.989913 -6.0507936 -1.9384562 0.61666656 -6.9282484 ] [ -0.03978544 -2.008681 -7.406146 -1.2036608 -3.8769712 -3.0997906 6.066886 ]]] [[[ -0.6766513 -0.16299164 3.2324884 -3.3543284 2.711526 -0.7604065 -2.9422672 ] [-11.477009 6.985447 -7.168281 1.6444209 2.1505005 -2.5210168 1.248457 ] [ -2.5344536 0.78997815 4.921354 0.32946062 -3.4039345 2.3872323 1.0319829 ]] [[ 5.672534 -4.6865053 5.780566 11.394991 1.0943577 1.6653306 -0.93034 ] [ 11.131994 6.8491035 -15.839502 7.006518 3.261397 -0.99962735 10.55006 ] [ 2.6103654 2.7730281 2.3594556 3.5570846 6.1872926 4.217743 -6.4607897 ]] [[ -2.7581267 -0.12229636 1.351732 -4.4823456 2.1730578 -2.828763 -3.0473292 ] [ -2.742803 -5.817521 -4.570032 -7.3254657 3.2537496 -0.6938226 0.6609373 ] [ -3.1279428 -4.922457 2.745709 -4.864913 -3.6143937 2.6719465 -1.1376699 ]]] [[[ -0.7445632 0.45240074 5.131389 -2.8525875 1.3901956 -0.4648465 5.4685025 ] [ 3.1593595 1.2171756 0.1267331 -3.2178001 -2.6123729 -5.186987 4.1898375 ] [ 9.478796 -1.8722348 4.896418 1.301182 -3.6362329 -1.9956454 -1.770525 ]] [[ 4.8301635 -3.8837552 7.0490103 1.2435023 3.4047306 -3.2604568 1.051601 ] [ -2.2003438 0.88552344 -6.8119774 7.017317 -2.9890797 5.8106375 -0.863615 ] [ -0.17809808 -10.802618 3.225249 -2.0419974 5.072168 1.2349106 -4.600774 ]] [[ -3.1843624 -2.5729177 1.191327 -3.0042355 0.97465754 -4.564925 3.9409044 ] [ 1.2322719 14.114404 -0.35690814 2.2237332 0.35432827 -1.9053037 -12.545719 ] [ 0.80399454 -5.358243 -6.344287 3.5417094 -3.9716966 -0.02347088 3.0606985 ]]] [[[ 0.37148464 -3.8297706 -2.0831337 6.29245 2.5057077 0.8506646 1.9863653 ] [ 3.765554 1.4267049 1.0800252 7.7149706 0.44219214 8.109619 3.6685073 ] [ 4.635173 -2.9154918 -6.4538617 -5.448964 6.57819 0.61271524 2.9938192 ]] [[ -3.616211 0.0879938 -6.3440037 1.6937144 0.04956067 2.4064069 -8.493458 ] [ -5.0647597 0.93558145 -1.9845109 -8.771115 4.6100225 1.1144816 -12.28625 ] [ 1.0221918 -7.5176277 -1.8426392 -4.289383 2.2868915 -8.87014 -0.3772235 ]] [[ -1.1132717 2.4524128 -0.365159 4.004697 -1.5730555 0.5331385 -6.8898973 ] [ 3.5391765 2.8012395 0.7159001 7.421248 -3.0292435 3.0187619 -3.9419355 ] [ -5.387392 -6.63677 2.4566684 1.821631 -0.16935372 -0.88219285 2.2688925 ]]] [[[ -3.9313369 -1.8516166 -3.2839324 -6.9028835 8.055535 -1.080044 -1.732337 ] [ -3.1068752 2.6514802 3.7293913 -1.7883471 -5.44104 -4.5572286 -4.829409 ] [ 2.6451612 -3.1832254 3.171578 -4.6448216 -4.001822 -6.899353 -0.6295476 ]] [[ -0.65707624 -1.9670736 6.3386445 2.3041923 -4.439172 -2.9729037 -0.94020796] [ 0.43153757 5.194006 0.45434368 3.0731819 4.0513067 -5.8058457 6.947601 ] [ -4.2653627 0.9031774 -1.6685407 -5.4121113 0.5529208 0.7007126 9.279081 ]] [[ -0.37299162 2.7452188 1.9330034 3.6408103 -5.0701776 1.1965587 0.59263295] [ 4.81972 -1.1006856 7.8824034 5.260598 3.434634 0.04601002 8.869657 ] [ 4.231048 1.5457909 -4.7653384 -3.4977267 3.7780495 -5.872396 12.113913 ]]] [[[ -3.8766992 -0.398234 -1.9723368 1.2132525 0.56892383 1.2515173 3.7913866 ] [ -0.4337333 1.8678297 5.1747704 -0.6080067 -1.3174248 -1.7126535 0.4686459 ] [ -5.754308 -2.4168007 -3.6410232 -4.5670137 1.6215359 -4.580209 -5.5926514 ]] [[ 11.04498 4.4554973 3.8934658 -1.4875691 -11.931008 4.515834 -6.144173 ] [ 3.8855233 -7.6059284 5.552779 -0.4441495 4.6369743 2.3952575 4.981801 ] [ -4.5357304 8.016967 -3.8956852 8.697634 0.7237491 -1.2161034 9.980692 ]] [[ -3.8816683 -6.1477547 6.313223 3.8985054 -2.1990623 2.0681944 -0.53726804] [ 0.9768859 0.2593964 5.1300526 -4.3372006 4.838679 1.2677834 1.0290532 ] [ -2.7676988 6.0724287 4.556395 -2.004102 -0.79856735 2.4891334 -1.8703268 ]]] [[[ -2.4113853 -4.7984595 -0.28992027 1.1324785 5.6149826 3.4891384 -0.2521189 ] [ 11.86079 -2.660718 1.3913785 -9.618228 0.04568058 -2.8031406 1.12844 ] [ -0.08115374 2.8916602 -5.7155695 -5.4544435 2.526495 6.5253263 1.3852744 ]] [[ -1.5733382 -0.08704215 2.6952646 7.385515 -0.7799995 3.1702318 -14.530704 ] [ 0.05908662 -13.9438095 -1.154305 3.4328744 7.0506897 -5.0249805 2.5534477 ] [ 0.61222774 0.14303133 4.685219 -7.0924406 1.7709903 1.0107443 -4.5374393 ]] [[ -5.6678987 0.6903403 2.23693 1.2741803 -6.179094 3.0454116 -5.2941957 ] [ 0.23656422 -2.2511265 3.3220747 2.021302 -3.070989 -3.815312 3.7513428 ] [ 5.048253 5.163742 -3.064779 5.2195883 6.6997313 -2.0612605 2.076776 ]]] [[[ -1.1741709 0.50855964 3.7991686 6.946745 -0.99349356 1.4751754 -1.08081 ] [ 2.1064334 0.3293423 1.8446237 -0.3842956 3.8418627 -2.5760477 -4.709687 ] [ -3.8787804 5.9237094 -3.8139226 3.2697144 -2.5398688 4.3881574 11.573359 ]] [[ -3.1857545 7.100687 -3.9305675 0.6854049 -1.2562029 1.2753329 8.361776 ] [ 2.7635245 -1.649135 -1.3044827 5.9628034 7.0507197 8.040147 -0.5544966 ] [ 6.0894575 1.864697 2.0811782 -8.773295 3.7755995 5.5564737 -3.4745088 ]] [[ 1.3517151 2.8740213 -6.181453 0.21349654 -5.9370227 -1.6817973 3.0836923 ] [ -0.7866033 2.7180645 3.2119308 4.905232 -3.8589058 -3.349786 -1.2415386 ] [ 7.3208423 7.184522 1.8396591 0.25130635 4.5287986 -1.9662986 -5.4157324 ]]] [[[ -1.796482 -0.19289398 0.08456608 9.18009 4.3642817 3.9750414 10.058201 ] [ -3.404979 10.002911 2.6454616 0.09656489 -5.6097493 2.0856397 8.30741 ] [ -6.1940312 0.20053774 7.5518293 1.6553136 -6.075909 1.9946573 -8.276907 ]] [[ 1.5515908 -4.065265 6.201588 -10.958014 2.8450232 1.7398013 6.308612 ] [ 1.3526641 -0.20383507 -0.97939104 -12.001176 6.5776787 7.0159016 -2.6269057 ] [ -3.5487242 -2.0833373 2.128775 8.243093 -1.1012591 3.3278828 0.64393663]] [[ 2.3041837 -1.2524377 3.4256964 3.190121 0.32376206 1.0883296 -3.531728 ] [ -2.393531 0.57050663 -3.172806 7.0572777 -0.7350081 -2.5658474 -6.9233646 ] [ -1.0682559 -0.22647202 10.799706 -5.5458803 -3.2260892 -0.6237745 6.320084 ]]] [[[ 8.890318 1.926058 -5.8980203 3.4635465 2.0711088 -1.0413806 -6.304987 ] [ -7.1290493 -8.781645 -10.162883 3.1751637 2.1062303 -0.04042304 -14.788281 ] [ -1.382834 -7.988844 2.7986026 -1.9692816 0.30068183 -1.4710974 -5.3116736 ]] [[ -7.576119 -3.2894049 0.7375753 -1.3818941 2.9862103 -6.683834 -7.8058653 ] [ 4.9312177 -0.04471028 -0.34124258 8.375692 -8.983649 -2.1781216 -12.752575 ] [ 9.337945 -5.1725883 10.788802 0.9727853 -2.5389743 1.0551623 1.4216776 ]] [[ 1.5142308 4.546703 -2.5327616 4.6643023 -2.0437615 -1.7893765 4.8349857 ] [ 3.843536 8.979685 -5.5770497 12.787272 3.2864804 -9.081071 5.1559086 ] [ -3.7020745 9.714738 -5.7880783 -2.3634226 4.0264153 5.8175054 -7.454776 ]]]] 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366

参考:
1、https://blog.csdn.net/mao_xiao_feng/article/details/53444333
2、https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
3、CNN原理介绍 https://blog.csdn.net/v_july_v/article/details/51812459

你可能感兴趣的:(tf.nn.conv2d)