- Android Glide 的显示与回调模块原理源码级深度剖析
&有梦想的咸鱼&
AndroidGlide原理Android开发大全androidglide
一、引言在当今的Android应用开发中,图片处理是一个至关重要的环节。从应用的图标展示到复杂的图片画廊,图片的加载和显示直接影响着用户体验。Glide作为一款功能强大且广泛使用的图片加载库,凭借其高效的性能、丰富的功能和简洁的API,成为了开发者的首选。其中,显示与回调模块更是Glide的核心部分,它负责将加载好的图片资源准确无误地显示在目标视图上,并在整个过程中提供各种回调机制,让开发者能够实
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 利用Java爬虫获取衣联网商品详情:实战指南
Jason-河山
java爬虫开发语言
在电商领域,获取商品详情是数据分析和市场研究的重要环节。衣联网作为知名的电商平台,提供了丰富的服装商品资源。本文将详细介绍如何利用Java编写爬虫程序,通过商品ID获取衣联网商品详情。一、准备工作(一)环境搭建Java安装:确保已安装Java开发环境,推荐使用JDK11或更高版本。开发工具配置:使用IntelliJIDEA或Eclipse等Java开发工具,创建一个新的Maven项目。依赖库添加:
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- Towards Multimodal Large-Language Models for Parent-Child Interaction: A Focus on Joint Attention
UnknownBody
LLMDailyMultimodal语言模型人工智能大数据
摘要共同注意是儿童早期语言发展的关键组成部分,也是亲子互动有效性的重要指标。然而,目前对共同注意的检测和分析研究仍然有限,尤其是在多模态大语言模型(MLLMs)方面。本研究通过分析由两位语言病理学家标注的26段亲子互动视频,评估了多模态大语言模型理解共同注意的能力。这些标注识别出了共同注意程度高和低的片段,作为评估模型解释能力的基准。我们的研究结果显示,由于当前的多模态大语言模型对儿童发起的眼神交
- 哪个AI论文生成助手好用?5 款AI论文工具深度评测
AI论文图鉴
人工智能
2025年,AI论文写作工具如雨后春笋般涌现,迅速在学术圈走红。身为一个常被论文写作困扰的“懒人”,我对这些工具的实际表现充满好奇。于是,我亲测了五款当下国内外最热门的AI论文写作助手,从功能、交互、写作水平、写作效率等维度进行全面评测,结果令人惊喜。相信这篇文章能为仍在观望的你带来新的启发与认识。这次测评,我挑选了五款极具代表性的AI工具,以“基于大语言模型的医疗诊断研究”为主题,看它们如何大显
- 推荐一款革命性的游戏对话管理工具:Godot 4 Dialogue Manager
袁菲李
推荐一款革命性的游戏对话管理工具:Godot4DialogueManager项目地址:https://gitcode.com/gh_mirrors/go/godot_dialogue_manager项目介绍在游戏开发领域中,对白设计是构建沉浸式剧情和角色深度的关键。Godot4DialogueManager,一个专为Godot引擎打造的开源插件,提供了直观且强大的分支对话编辑器和运行时解决方案。这
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- AbMole| 纳米药物递送系统IL@H-PP在乳腺癌和脑转移光热疗法
AbMole
AbMole生物化学生物试剂科研生物实验
近年来,光热疗法(PTT)作为一种非侵入性的癌症治疗手段,因其独特的优势而受到广泛关注。来自四川大学华西药学院药物靶向与药物递送系统重点实验室的范童,胡海丽,徐燕燕等多名研究人员发表了题为《HollowcoppersulfidenanoparticlescarryingISRIBforthesensitizedphotothermaltherapyofbreastcancerandbrainmet
- R+VIC 模型融合实践技术应用及未来气候变化模型预测
weixin_贾
水文模型集合水文水资源防洪评价风险评估滑坡泥石流数学建模经验分享
目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地-大气的能量通量,考虑土壤性质和土地利用的影响,自带有简化的湖泊/湿地模块,也能够将植被状
- 如何通过深度学习优化操作系统中的故障诊断与恢复机制
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3深度学习人工智能
如何通过深度学习优化操作系统中的故障诊断与恢复机制(副标题:智能监控、自适应诊断与自动恢复——操作系统故障自愈的新方向)摘要随着现代操作系统在多核、高并发和分布式环境中的广泛应用,系统故障及其恢复问题日益成为影响系统稳定性和业务连续性的关键挑战。传统的故障诊断方法依赖于预设规则和人工干预,难以应对复杂多变的故障场景。本文提出了一种基于深度学习的故障诊断与恢复机制,通过对大量历史日志、监控数据和故障
- 数据分享|1961-2017年中国0.25°×0.25° 逐日地表水文数据集(VIC-CN05.1)
JGiser
GIS数据未分类(气象等等)arcgis
缺乏长期高精度的地表观测给我国水文气象研究带来了很大的不确定性。本数据基于陆面水文模式(VICv4.2.d,VariableInfiltrationCapacitymodel)模拟构建了中国1961~2017年0.25°×0.25°逐日地表水文数据集(VIC-CN05.1)。大气驱动场(降水、温度和风速)来自基于中国2400多个站点观测资料插值而成的0.25°×0.25°逐日气象数据集(CN05.
- 警惕AI神话破灭:深度解析大模型缺陷与禁用场景指南
领码科技
AI应用IT职场大模型缺陷AI工具风险伦理挑战应用场景限制可信AI
摘要当前AI大模型虽展现强大能力,但其本质缺陷可能引发系统性风险。本文从认知鸿沟、数据困境、伦理雷区、技术瓶颈四大维度剖析大模型局限性,揭示医疗诊断、法律决策等8类禁用场景,提出可信AI建设框架与用户防护策略。通过理论分析与实操案例结合,为规避AI工具风险提供系统性解决方案。关键词:大模型缺陷、AI工具风险、伦理挑战、应用场景限制、可信AI一、认知鸿沟:无法企及的人类智慧1.1创造性思维的致命短板
- 移动系统设计面试框架:打造你的技术面试利器
强海寒
移动系统设计面试框架:打造你的技术面试利器mobile-system-designAsimpleframeworkformobilesystemdesigninterviews项目地址:https://gitcode.com/gh_mirrors/mo/mobile-system-design项目介绍在移动开发领域,系统设计面试是评估候选人技术深度和广度的重要环节。然而,许多开发者在面对这类面试时
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- PyTorch实现CNN:CIFAR-10图像分类实战教程
吴师兄大模型
PyTorchpytorchcnnCIFAR-10图像分类人工智能python卷积神经网络开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 清华大学出品《DeepSeek从入门到精通》超详细使用手册pdf
2501_90570130
pdf人工智能
链接:https://pan.quark.cn/s/70da09749050清华大学新闻与传播学院团队发布了长达104页的DeepSeek详细使用手册,该手册成为国产AI工具DeepSeek深度使用的标杆指南。手册内容涵盖基础入门、核心能力与模型对比、进阶提示语策略、场景化应用以及人机协作与能力进阶等方面。它不仅适合新手快速掌握DeepSeek的基础操作,还为进阶用户提供了系统性方法论。
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- Redis 主从复制机制深度解析与实践指南
月落星还在
redisredis数据库缓存
Redis的主从复制(Replication)是构建高可用、高性能分布式缓存和数据库系统的核心机制。通过主从复制,数据可以从一个主节点(Master)自动同步到多个从节点(Slave),实现读写分离、负载均衡和故障恢复。本文将深入探讨主从复制的原理、配置方法、常见问题及优化策略。一、主从复制的核心概念1.1什么是主从复制?主从复制是一种数据同步机制,允许从节点实时复制主节点的数据。主节点负责处理写
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 浅谈ArcGIS的地理处理(GP)服务的不足与可能的解决方法
匹马夕阳
GIS数据处理arcgis
尽管ArcGIS的地理处理(GP)服务提供了强大的空间分析和数据处理功能,但至今它未能真正广泛流行和被所有GIS开发者接受。即便它有许多优点,例如丰富的分析功能、与ArcGIS平台的深度集成、支持大规模地理数据处理等,但由于技术和使用场景中的一些局限性,它在某些领域的普及受限。以下是原因的详细解析以及未来解决这些问题的途径。一、GP服务未能流行的原因分析1.高昂的成本与许可问题背景:ArcGIS的
- 全面掌握C#多线程编程:核心机制、高级技巧与性能调优
Ro小陌
C#Java开发语言c#java开发语言
在C#中,多线程编程的深度解析需要从底层机制、运行时行为、同步原语和最佳实践等多个维度展开。以下是更深入的技术解析:一、线程与操作系统内核的交互1.线程的底层实现用户模式线程(User-ModeThreads):由CLR管理,轻量级但无法利用多核,依赖协作式调度(如async/await中的状态机)。内核模式线程(Kernel-ModeThreads):由操作系统调度,支持抢占式多任务,每个C#T
- 地理信息系统(ArcGIS)在水文水资源、水环境中的技术应用
岁月如歌,青春不败
水文水资源arcgis水文模型水文资源水文水资源水质模型洪水地理信息系统
在水文水环境保护中,对于信息的采集、处理和分析是关键步骤。水文水环境及其相关数据均具有空间分布特征,传统的方法难以发挥作用。地理信息系统(GIS)强大的空间数据管理和分析功能,在空间信息处理上有独到的优势,是研究区域水文水环境的空间差异的有力工具,GIS在水文水环境中的应用对解决水文水环境中许多问题起着重要的作用与意义。一:ARCGIS数据管理1.1ArcGIS界面及数据加载1.2ArcGIS常见
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">