Netty源码分析之NioEventLoop(三)—NioEventLoop的执行

前面两篇文章Netty源码分析之NioEventLoop(一)—NioEventLoop的创建与Netty源码分析之NioEventLoop(二)—NioEventLoop的启动中我们对NioEventLoop的创建与启动做了具体的分析,本篇文章中我们会对NioEventLoop的具体执行内容进行分析;

从之前的代码中我们可以知道NioEventLoop的执行都是在run()方法的for循环中完成的

 @Override
    protected void run() {
        //循环处理IO事件和task任务
        for (;;) {
            try {
                try {
                    switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:
                        // fall-through to SELECT since the busy-wait is not supported with NIO

                    case SelectStrategy.SELECT:
                        //通过cas操作标识select方法的唤醒状态,执行select操作
                        select(wakenUp.getAndSet(false));

                        // 'wakenUp.compareAndSet(false, true)' is always evaluated
                        // before calling 'selector.wakeup()' to reduce the wake-up
                        // overhead. (Selector.wakeup() is an expensive operation.)
                        //
                        // However, there is a race condition in this approach.
                        // The race condition is triggered when 'wakenUp' is set to
                        // true too early.
                        //
                        // 'wakenUp' is set to true too early if:
                        // 1) Selector is waken up between 'wakenUp.set(false)' and
                        //    'selector.select(...)'. (BAD)
                        // 2) Selector is waken up between 'selector.select(...)' and
                        //    'if (wakenUp.get()) { ... }'. (OK)
                        //
                        // In the first case, 'wakenUp' is set to true and the
                        // following 'selector.select(...)' will wake up immediately.
                        // Until 'wakenUp' is set to false again in the next round,
                        // 'wakenUp.compareAndSet(false, true)' will fail, and therefore
                        // any attempt to wake up the Selector will fail, too, causing
                        // the following 'selector.select(...)' call to block
                        // unnecessarily.
                        //
                        // To fix this problem, we wake up the selector again if wakenUp
                        // is true immediately after selector.select(...).
                        // It is inefficient in that it wakes up the selector for both
                        // the first case (BAD - wake-up required) and the second case
                        // (OK - no wake-up required).

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                        // fall through
                    default:
                    }
                } catch (IOException e) {
                    // If we receive an IOException here its because the Selector is messed up. Let's rebuild
                    // the selector and retry. https://github.com/netty/netty/issues/8566
                    rebuildSelector0();
                    handleLoopException(e);
                    continue;
                }

                cancelledKeys = 0;
                needsToSelectAgain = false;
                // 这个比例是处理IO事件所需的时间和花费在处理task时间的比例
                final int ioRatio = this.ioRatio;
                if (ioRatio == 100) {
                    try {
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        runAllTasks();
                    }
                } else {
                    //IO处理的开始时间
                    final long ioStartTime = System.nanoTime();
                    try {
                        //处理IO事件的函数
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        // 当前时间减去处理IO事件开始的时间就是处理IO事件花费的时间
                        final long ioTime = System.nanoTime() - ioStartTime;
                        //执行任务方法
                        runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
            // Always handle shutdown even if the loop processing threw an exception.
            try {
                //判断线程池是否shutdown,关闭的话释放所有资源
                if (isShuttingDown()) {
                    closeAll();
                    if (confirmShutdown()) {
                        return;
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
        }
    }

通过上面的代码我们把NioEventLoop中run方法主要归纳为以下三个功能:

1、通过select()检测IO事件;

2、通过processSelectedKeys()处理IO事件;

3、runAllTasks()处理线程任务队列;

Netty源码分析之NioEventLoop(三)—NioEventLoop的执行_第1张图片

接下来我们就从这三个方面入手,对NioEventLoop的具体执行代码进行解析。

 

一、检测IO事件

IO事件的监测,主要通过 select(wakenUp.getAndSet(false) 方法实现,具体的代码分析如下:

    private void select(boolean oldWakenUp) throws IOException {
        Selector selector = this.selector;
        try {
            int selectCnt = 0;
            long currentTimeNanos = System.nanoTime();
            //定义select操作的截止时间
            long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

            for (;;) {
                //计算当前select操作是否超时
                long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
                if (timeoutMillis <= 0) {
                    //如果已经超时,且没有执行过轮询操作,则执行selectNow()非阻塞操作,直接跳出循环
                    if (selectCnt == 0) {
                        selector.selectNow();
                        selectCnt = 1;
                    }
                    break;
                }

                // If a task was submitted when wakenUp value was true, the task didn't get a chance to call
                // Selector#wakeup. So we need to check task queue again before executing select operation.
                // If we don't, the task might be pended until select operation was timed out.
                // It might be pended until idle timeout if IdleStateHandler existed in pipeline.
                if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                    //如果有需要任务队列,同样跳出循环
                    selector.selectNow();
                    selectCnt = 1;
                    break;
                }

                //执行select阻塞操作,其阻塞时间为timeoutMillis
                int selectedKeys = selector.select(timeoutMillis);
                selectCnt ++;

                if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                    // - Selected something,
                    // - waken up by user, or
                    // - the task queue has a pending task.
                    // - a scheduled task is ready for processing
                    //1、如果轮询到select事件 2、wekup为true,表示轮询线程已经被唤醒 3、任务队列不为空 4、定时任务对队列有任务
                    //上述条件只要满足一个就跳出select循环
                    break;
                }
                if (Thread.interrupted()) {
                    // Thread was interrupted so reset selected keys and break so we not run into a busy loop.
                    // As this is most likely a bug in the handler of the user or it's client library we will
                    // also log it.
                    //
                    // See https://github.com/netty/netty/issues/2426
                    if (logger.isDebugEnabled()) {
                        logger.debug("Selector.select() returned prematurely because " +
                                "Thread.currentThread().interrupt() was called. Use " +
                                "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
                    }
                    //线程被中断,同样跳出select循环
                    selectCnt = 1;
                    break;
                }


                long time = System.nanoTime();//记录当前时间
                //如果 当前时间-超时时间>起始时间 也就是 当前时间-起始时间>超时时间
                if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                    // timeoutMillis elapsed without anything selected.
                    //满足条件,则是一次正常的select操作,否则就是一次空轮询操作
                    selectCnt = 1;
                } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                        selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                    // The code exists in an extra method to ensure the method is not too big to inline as this
                    // branch is not very likely to get hit very frequently.
                    //如果轮询次数大于SELECTOR_AUTO_REBUILD_THRESHOLD,则对当前selector进行处理
                    //执行selectRebuildSelector操作,把当前selector的selectedKeys注册到一个新的selector上
                    selector = selectRebuildSelector(selectCnt);
                    selectCnt = 1;
                    break;
                }

                currentTimeNanos = time;
            }

            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
                if (logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                            selectCnt - 1, selector);
                }
            }
        } catch (CancelledKeyException e) {
            if (logger.isDebugEnabled()) {
                logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
                        selector, e);
            }
            // Harmless exception - log anyway
        }
    }

Netty通过创建一个新的selector,且把原有selector上的SelectionKey同步到新的selector上的方式,解决了selector空轮询的bug,我们看下具体的代码实现

    private Selector selectRebuildSelector(int selectCnt) throws IOException {
        // The selector returned prematurely many times in a row.
        // Rebuild the selector to work around the problem.
        logger.warn(
                "Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
                selectCnt, selector);

        //重新创建一个Selector
        rebuildSelector();
        Selector selector = this.selector;

        // Select again to populate selectedKeys.
        selector.selectNow();
        return selector;
    }
    public void rebuildSelector() {
        if (!inEventLoop()) {
            //如果当前线程和NioEventLoop绑定的线程不一致
            execute(new Runnable() {
                @Override
                public void run() {
                    rebuildSelector0();
                }
            });
            return;
        }
        //具体实现
        rebuildSelector0();
    }
    private void rebuildSelector0() {
        final Selector oldSelector = selector;
        final SelectorTuple newSelectorTuple;

        if (oldSelector == null) {
            return;
        }

        try {
            //创建一个新的selector
            newSelectorTuple = openSelector();
        } catch (Exception e) {
            logger.warn("Failed to create a new Selector.", e);
            return;
        }

        // Register all channels to the new Selector.
        int nChannels = 0;
        for (SelectionKey key: oldSelector.keys()) { //遍历oldSelector上所有的SelectionKey
            Object a = key.attachment();
            try {
                if (!key.isValid() || key.channel().keyFor(newSelectorTuple.unwrappedSelector) != null) {
                    continue;
                }

                int interestOps = key.interestOps();
                key.cancel();//取消原有的SelectionKey上的事件
                //在channel上注册新的Selector
                SelectionKey newKey = key.channel().register(newSelectorTuple.unwrappedSelector, interestOps, a);
                if (a instanceof AbstractNioChannel) {
                    // Update SelectionKey
                    //把新的SelectionKey赋给AbstractNioChannel
                    ((AbstractNioChannel) a).selectionKey = newKey;
                }
                nChannels ++;
            } catch (Exception e) {
                logger.warn("Failed to re-register a Channel to the new Selector.", e);
                if (a instanceof AbstractNioChannel) {
                    AbstractNioChannel ch = (AbstractNioChannel) a;
                    ch.unsafe().close(ch.unsafe().voidPromise());
                } else {
                    @SuppressWarnings("unchecked")
                    NioTask task = (NioTask) a;
                    invokeChannelUnregistered(task, key, e);
                }
            }
        }
        //替换新的selector
        selector = newSelectorTuple.selector;
        unwrappedSelector = newSelectorTuple.unwrappedSelector;

        try {
            // time to close the old selector as everything else is registered to the new one
            oldSelector.close();
        } catch (Throwable t) {
            if (logger.isWarnEnabled()) {
                logger.warn("Failed to close the old Selector.", t);
            }
        }

        if (logger.isInfoEnabled()) {
            logger.info("Migrated " + nChannels + " channel(s) to the new Selector.");
        }
    }

通过上面的代码可以看到,NioEventLoop的select方法主要实现三方面的功能

1、结合超时时间、任务队列及select本身唤醒状态进行是否跳出for(;;)循环的逻辑判断;

2、进行select阻塞操作,selector检测到事则跳出for(;;)循环;

3、通过创建一个新的selector的方式解决selector空轮询的bug问题;

二、处理IO事件

IO事件处理的核心方法是processSelectedKeys(),看下其代码的具体实现

    private void processSelectedKeys() {
        //NioEventLoop的构造函数中通过openSelector()方法初始化selectedKeys,并赋给对应的selector
        if (selectedKeys != null) {
            //selectedKeys不为空
            processSelectedKeysOptimized();
        } else {
            processSelectedKeysPlain(selector.selectedKeys());
        }
    }
如果selectedKeys不为空,也就是检测到注册的IO事件,则执行processSelectedKeysOptimized()方法
    private void processSelectedKeysOptimized() {
        //遍历selectedKeys
        for (int i = 0; i < selectedKeys.size; ++i) {
            final SelectionKey k = selectedKeys.keys[i];
            // null out entry in the array to allow to have it GC'ed once the Channel close
            // See https://github.com/netty/netty/issues/2363
            selectedKeys.keys[i] = null;

            //拿到SelectionKey对应的channel
            final Object a = k.attachment();

            if (a instanceof AbstractNioChannel) {
                //如果是AbstractNioChannel的对象,执行processSelectedKey
                processSelectedKey(k, (AbstractNioChannel) a);
            } else {
                //否则转换为一个NioTask对象
                @SuppressWarnings("unchecked")
                NioTask task = (NioTask) a;
                processSelectedKey(k, task);
            }

            if (needsToSelectAgain) {
                // null out entries in the array to allow to have it GC'ed once the Channel close
                // See https://github.com/netty/netty/issues/2363
                selectedKeys.reset(i + 1);

                selectAgain();
                i = -1;
            }
        }
    }

通过遍历selectedKeys,拿到所有触发IO事件的SelectionKey与其对应Channel,然后交给processSelectedKey()方法处理

    private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        //拿到该AbstractNioChannel的unsafe对象
        final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
        if (!k.isValid()) {
            final EventLoop eventLoop;
            try {
                //拿到绑定的eventLoop
                eventLoop = ch.eventLoop();
            } catch (Throwable ignored) {
                // If the channel implementation throws an exception because there is no event loop, we ignore this
                // because we are only trying to determine if ch is registered to this event loop and thus has authority
                // to close ch.
                return;
            }
            // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
            // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
            // still healthy and should not be closed.
            // See https://github.com/netty/netty/issues/5125
            if (eventLoop != this || eventLoop == null) {
                return;
            }
            // close the channel if the key is not valid anymore
            unsafe.close(unsafe.voidPromise());
            return;
        }

        try {
            //针对检测到的IO事件进行处理
            int readyOps = k.readyOps();
            // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
            // the NIO JDK channel implementation may throw a NotYetConnectedException.
            if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
                // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
                // See https://github.com/netty/netty/issues/924
                int ops = k.interestOps();
                ops &= ~SelectionKey.OP_CONNECT;
                k.interestOps(ops);

                unsafe.finishConnect();
            }

            // Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
            if ((readyOps & SelectionKey.OP_WRITE) != 0) {
                // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
                ch.unsafe().forceFlush();
            }

            // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
            // to a spin loop
            //新连接接入事件
            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                unsafe.read();
            }
        } catch (CancelledKeyException ignored) {
            unsafe.close(unsafe.voidPromise());
        }
    }

 从上面的代码中可以看到NioEventLoop处理IO事件的流程中,会循环从SelectedSelectionKeySet中获取触发事件的SelectionKey,Netty在这里对JDK中NIO的Selector进行了优化,在NioEventLoop构造函数中通过openSelector()方法用自定义的SelectedSelectionKeySet替代Selector原有的selectedKeys与publicSelectedKeys。

    private SelectorTuple openSelector() {
        final Selector unwrappedSelector;
        try {
            //创建一个Selector
            unwrappedSelector = provider.openSelector();
        } catch (IOException e) {
            throw new ChannelException("failed to open a new selector", e);
        }

        if (DISABLE_KEY_SET_OPTIMIZATION) {
            return new SelectorTuple(unwrappedSelector);
        }


        //通过反射的方式获取 sun.nio.ch.SelectorImpl 类
        Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction() {
            @Override
            public Object run() {
                try {

                    return Class.forName(
                            "sun.nio.ch.SelectorImpl",
                            false,
                            PlatformDependent.getSystemClassLoader());
                } catch (Throwable cause) {
                    return cause;
                }
            }
        });

        if (!(maybeSelectorImplClass instanceof Class) ||
            // ensure the current selector implementation is what we can instrument.
            !((Class) maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) {
            if (maybeSelectorImplClass instanceof Throwable) {
                Throwable t = (Throwable) maybeSelectorImplClass;
                logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t);
            }
            return new SelectorTuple(unwrappedSelector);
        }

        final Class selectorImplClass = (Class) maybeSelectorImplClass;
        //初始化一个SelectedSelectionKeySet对象
        final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();

        Object maybeException = AccessController.doPrivileged(new PrivilegedAction() {
            @Override
            public Object run() {
                try {
                    //获取"sun.nio.ch.SelectorImpl"类的selectedKeys属性
                    Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
                    //获取"sun.nio.ch.SelectorImpl"类的publicSelectedKeys属性
                    Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");

                    if (PlatformDependent.javaVersion() >= 9 && PlatformDependent.hasUnsafe()) {
                        // Let us try to use sun.misc.Unsafe to replace the SelectionKeySet.
                        // This allows us to also do this in Java9+ without any extra flags.
                        long selectedKeysFieldOffset = PlatformDependent.objectFieldOffset(selectedKeysField);
                        long publicSelectedKeysFieldOffset =
                                PlatformDependent.objectFieldOffset(publicSelectedKeysField);

                        if (selectedKeysFieldOffset != -1 && publicSelectedKeysFieldOffset != -1) {
                            //把selectedKeySet赋值给selectedKeys
                            PlatformDependent.putObject(
                                    unwrappedSelector, selectedKeysFieldOffset, selectedKeySet);
                            //把selectedKeySet赋值给publicSelectedKeys
                            PlatformDependent.putObject(
                                    unwrappedSelector, publicSelectedKeysFieldOffset, selectedKeySet);
                            return null;
                        }
                        // We could not retrieve the offset, lets try reflection as last-resort.
                    }

                    Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true);
                    if (cause != null) {
                        return cause;
                    }
                    cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true);
                    if (cause != null) {
                        return cause;
                    }

                    selectedKeysField.set(unwrappedSelector, selectedKeySet);
                    publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
                    return null;
                } catch (NoSuchFieldException e) {
                    return e;
                } catch (IllegalAccessException e) {
                    return e;
                }
            }
        });

        if (maybeException instanceof Exception) {
            selectedKeys = null;
            Exception e = (Exception) maybeException;
            logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e);
            return new SelectorTuple(unwrappedSelector);
        }
        selectedKeys = selectedKeySet;
        logger.trace("instrumented a special java.util.Set into: {}", unwrappedSelector);
        return new SelectorTuple(unwrappedSelector,
                                 new SelectedSelectionKeySetSelector(unwrappedSelector, selectedKeySet));
    } 
  
 

SelectedSelectionKeySet 代码实现如下

final class SelectedSelectionKeySet extends AbstractSet {

    SelectionKey[] keys;
    int size;

    //构造函数中初始化一个1024长度的数组
    SelectedSelectionKeySet() {
        keys = new SelectionKey[1024];
    }

    @Override
    public boolean add(SelectionKey o) {
        if (o == null) {
            return false;
        }

        //向数组中添加元素
        keys[size++] = o;
        if (size == keys.length) {
            //进行扩容
            increaseCapacity();
        }

        return true;
    }

    @Override
    public boolean remove(Object o) {
        return false;
    }

    @Override
    public boolean contains(Object o) {
        return false;
    }

    @Override
    public int size() {
        return size;
    }

    @Override
    public Iterator iterator() {
        return new Iterator() {
            private int idx;

            @Override
            public boolean hasNext() {
                return idx < size;
            }

            @Override
            public SelectionKey next() {
                if (!hasNext()) {
                    throw new NoSuchElementException();
                }
                return keys[idx++];
            }

            @Override
            public void remove() {
                throw new UnsupportedOperationException();
            }
        };
    }

    void reset() {
        reset(0);
    }

    void reset(int start) {
        Arrays.fill(keys, start, size, null);
        size = 0;
    }

    private void increaseCapacity() {
        SelectionKey[] newKeys = new SelectionKey[keys.length << 1];
        System.arraycopy(keys, 0, newKeys, 0, size);
        keys = newKeys;
    }
}

这里的优化点主要在于用底层为数组实现的SelectedSelectionKeySet 代替HashSet类型的selectedKeys与publicSelectedKeys,因为HashSet的add方法最大的时间复杂度可能为O(n),而SelectedSelectionKeySet 主要就是用数组实现一个基本的add方法,时间复杂度为O(1),在这一点上相比HashSet要简单很多。

三、线程任务的执行

NioEventLoop中通过runAllTasks方法执行线程任务

    protected boolean runAllTasks(long timeoutNanos) {
        //把需要执行的定时任务从scheduledTaskQueue转移到taskQueue
        fetchFromScheduledTaskQueue();
        Runnable task = pollTask();
        if (task == null) {
            afterRunningAllTasks();
            return false;
        }

        //计算截止时间
        final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
        long runTasks = 0;
        long lastExecutionTime;
        for (;;) {
            //执行task任务
            safeExecute(task);

            runTasks ++;

            // Check timeout every 64 tasks because nanoTime() is relatively expensive.
            // XXX: Hard-coded value - will make it configurable if it is really a problem.
            if ((runTasks & 0x3F) == 0) {
                //每执行64次任务,进行一次超时检查
                lastExecutionTime = ScheduledFutureTask.nanoTime();
                if (lastExecutionTime >= deadline) {
                    //如果超出最大执行时间就跳出循环
                    break;
                }
            }

            task = pollTask();//继续获取任务
            if (task == null) {
                lastExecutionTime = ScheduledFutureTask.nanoTime();
                break;
            }
        }

        afterRunningAllTasks();
        this.lastExecutionTime = lastExecutionTime;
        return true;
    }

 NioEventLoop中维护了两组任务队列,一种是普通的taskQueue,一种是定时任务scheduledTaskQueue,而runAllTasks()方法首先会把scheduledTaskQueue队列中的定时任务转移到taskQueue中,然后在截止时间内循环执行

    private boolean fetchFromScheduledTaskQueue() {
        long nanoTime = AbstractScheduledEventExecutor.nanoTime();
        //从定时任务队列中拉取任务
        Runnable scheduledTask  = pollScheduledTask(nanoTime);
        while (scheduledTask != null) {
            //把获取的scheduledTask插入taskQueue
            if (!taskQueue.offer(scheduledTask)) {
                // No space left in the task queue add it back to the scheduledTaskQueue so we pick it up again.
                scheduledTaskQueue().add((ScheduledFutureTask) scheduledTask);
                return false;
            }
            scheduledTask  = pollScheduledTask(nanoTime);
        }
        return true;
    }

定时任务队列ScheduledFutureTask是个优先级任务队列,会根据截止时间与任务id,保证截止时间最近的任务优先执行

final class ScheduledFutureTask extends PromiseTask implements ScheduledFuture, PriorityQueueNode
    @Override
    public int compareTo(Delayed o) {
        if (this == o) {
            return 0;
        }
        ScheduledFutureTask that = (ScheduledFutureTask) o;
        long d = deadlineNanos() - that.deadlineNanos();
        if (d < 0) {
            return -1;
        } else if (d > 0) {
            return 1;
        } else if (id < that.id) {
            return -1;
        } else if (id == that.id) {
            throw new Error();
        } else {
            return 1;
        }
    }

四、总结

以上我们主要对NioEventLoop的执行进行了分析与汇总,核心run()方法主要完成了IO的检测和处理,队列任务执行等操作,在这里从源码的角度对整个流程进行了解析与说明,其中有错误和不足之处还请指正与海涵。

 

关注微信公众号,查看更多技术文章。

Netty源码分析之NioEventLoop(三)—NioEventLoop的执行_第2张图片

你可能感兴趣的:(Netty源码分析之NioEventLoop(三)—NioEventLoop的执行)