swift学习笔记(10)--- 属性

属性将值与特定的类、结构体或枚举关联。属性可以分为:

  • 存储属性:将常量和变量存储为实例的一部分,只能用于类和结构体。
  • 计算属性:直接计算值,可以用于类、结构体和枚举。

属性也可以直接与类型本身关联,这种属性称为类型属性。

另外,还可以定义属性观察器来监控属性值的变化,以此来触发自定义的操作。属性观察器可以添加到类本身定义的存储属性上,也可以添加到从父类继承的属性上。

1、存储属性

存储属性就是存储在特定类或结构体实例里的一个常量或变量。可以在定义存储属性的时候指定默认值,也可以在构造过程中设置或修改存储属性的值,甚至修改常量存储属性的值。

struct FixedLengthRange {
    var firstValue: Int
    let length: Int
}
var rangeOfThreeItems = FixedLengthRange(firstValue: 0, length: 3)
// 该区间表示整数 0,1,2
rangeOfThreeItems.firstValue = 6
// 该区间现在表示整数 6,7,8
(1)常量结构体实例的存储属性

如果创建了一个结构体实例并将其赋值给一个常量,则无法修改该实例的任何属性,即使被声明为可变属性也不行。

let rangeOfFourItems = FixedLengthRange(firstValue: 0, length: 4)
// 该区间表示整数 0,1,2,3
rangeOfFourItems.firstValue = 6
// 尽管 firstValue 是个可变属性,但这里还是会报错

这种行为是由于结构体属于值类型,当值类型的实例被声明为常量的时候,它的所有属性也就成了常量。

(2)延时加载存储属性

延时加载存储属性是指当第一次被调用的时候才会计算其初始值的属性,在属性声明前使用 lazy来标示一个延时加载存储属性。

class DataImporter {
    /*
    DataImporter 是一个负责将外部文件中的数据导入的类。
    这个类的初始化会消耗不少时间。
    */
    var fileName = "data.txt"
    // 这里会提供数据导入功能
}

class DataManager {
    lazy var importer = DataImporter()
    var data = [String]()
    // 这里会提供数据管理功能
}

let manager = DataManager()
manager.data.append("Some data")
manager.data.append("Some more data")
// DataImporter 实例的 importer 属性还没有被创建
print(manager.importer.fileName)
// DataImporter 实例的 importer 属性现在被创建了
// 输出“data.txt”

注意:

  • 必须将延时加载属性声明成变量,因为属性的初始值可能在实例构造完成之后才会得到。而常量属性在构造过程完成之前必须要有初始值,因此无法声明成延时加载。
  • 如果一个被标记为 lazy 的属性在没有初始化时就同时被多个线程访问,则无法保证该属性只会被初始化一次。
(3)存储属性和实例变量

Objective-C 为类实例存储值和引用提供两种方法,除了属性之外,还可以使用实例变量作为一个备份存储将变量值赋值给属性。
Swift 把这些理论统一用属性来实现。Swift 中的属性没有对应的实例变量,属性的备份存储也无法直接访问。这就避免了不同场景下访问方式的困扰,同时也将属性的定义简化成一个语句。属性的全部信息——包括命名、类型和内存管理特征——作为类型定义的一部分,都定义在一个地方。

2、计算属性

计算属性不直接存储值,而是提供一个 getter 和 一个可选的 setter,来间接获取和设置其他属性或变量的值。

struct Point {
    var x = 0.0, y = 0.0
}
struct Size {
    var width = 0.0, height = 0.0
}
struct Rect {
    var origin = Point()
    var size = Size()
    var center: Point {
        get {
            let centerX = origin.x + (size.width / 2)
            let centerY = origin.y + (size.height / 2)
            return Point(x: centerX, y: centerY)
        }
        set(newCenter) {
            origin.x = newCenter.x - (size.width / 2)
            origin.y = newCenter.y - (size.height / 2)
        }
    }
}
var square = Rect(origin: Point(x: 0.0, y: 0.0),
    size: Size(width: 10.0, height: 10.0))
let initialSquareCenter = square.center
square.center = Point(x: 15.0, y: 15.0)
print("square.origin is now at (\(square.origin.x), \(square.origin.y))")
// 打印“square.origin is now at (10.0, 10.0)”
(1)简化 setter 声明

如果计算属性的 setter 没有定义表示新值的参数名,则可以使用默认值名称 newValue

struct AlternativeRect {
    var origin = Point()
    var size = Size()
    var center: Point {
        get {
            let centerX = origin.x + (size.width / 2)
            let centerY = origin.y + (size.height / 2)
            return Point(x: centerX, y: centerY)
        }
        set {
            origin.x = newValue.x - (size.width / 2)
            origin.y = newValue.y - (size.height / 2)
        }
    }
}
(2)简化 getter 声明

如果整个 getter 是单一表达式,getter 会隐式地返回这个表达式结果:

struct CompactRect {
    var origin = Point()
    var size = Size()
    var center: Point {
        get {
            Point(x: origin.x + (size.width / 2),
                  y: origin.y + (size.height / 2))
        }
        set {
            origin.x = newValue.x - (size.width / 2)
            origin.y = newValue.y - (size.height / 2)
        }
    }
}
(3)只读计算属性

只有 getter没有 setter 的计算属性叫只读计算属性。只读计算属性总是返回一个值,可以通过点运算符访问,但不能设置新的值。

struct Cuboid {
    var width = 0.0, height = 0.0, depth = 0.0
    var volume: Double {
        return width * height * depth
    }
}
let fourByFiveByTwo = Cuboid(width: 4.0, height: 5.0, depth: 2.0)
print("the volume of fourByFiveByTwo is \(fourByFiveByTwo.volume)")
// 打印“the volume of fourByFiveByTwo is 40.0”

注意:

  • 只读计算属性的声明可以去掉 get 关键字和花括号
  • 必须使用 var 关键字定义计算属性,包括只读计算属性,因为它们的值不是固定的。let 关键字只用来声明常量属性,表示初始化后再也无法修改的值

3、属性观察器

属性观察器监控和响应属性值的变化,每次属性被设置值的时候都会调用属性观察器,即使新值和当前值相同的时候也不例外。

可以为属性添加观察器:

  • willSet 在新的值被设置之前调用,默认名称 newValue 表示
  • didSet 在新的值被设置之后调用,默认参数名 oldValue
class StepCounter {
    var totalSteps: Int = 0 {
        willSet(newTotalSteps) {
            print("将 totalSteps 的值设置为 \(newTotalSteps)")
        }
        didSet {
            if totalSteps > oldValue  {
                print("增加了 \(totalSteps - oldValue) 步")
            }
        }
    }
}
let stepCounter = StepCounter()
stepCounter.totalSteps = 200
// 将 totalSteps 的值设置为 200
// 增加了 200 步
stepCounter.totalSteps = 360
// 将 totalSteps 的值设置为 360
// 增加了 160 步
stepCounter.totalSteps = 896
// 将 totalSteps 的值设置为 896
// 增加了 536 步

注意:

  • 在父类初始化方法调用之后,在子类构造器中给父类的属性赋值时,会调用父类属性的 willSetdidSet 观察器。而在父类初始化方法调用之前,给子类的属性赋值时不会调用子类属性的观察器。
  • 如果将带有观察器的属性通过 in-out 方式传入函数,willSetdidSet 也会调用。这是因为 in-out 参数采用了拷入拷出内存模式:即在函数内部使用的是参数的 copy,函数结束后,又对参数重新赋值。

4、全局变量和局部变量

  • 计算属性和观察属性所描述的功能也可以用于全局变量和局部变量
  • 全局的常量或变量都是延迟计算的,跟 延时加载存储属性相似,不同的地方在于,全局的常量或变量不需要标记 lazy修饰符。
  • 局部范围的常量和变量从不延迟计算

5、类型属性

类型属性用于定义某个类型所有实例共享的数据,比如所有实例都能用的一个常量(就像 C 语言中的静态常量),或者所有实例都能访问的一个变量(就像 C 语言中的静态变量)。

存储型类型属性可以是变量或常量,计算型类型属性跟实例的计算型属性一样只能定义成变量属性。

注意:

  • 跟实例的存储型属性不同,必须给存储型类型属性指定默认值,因为类型本身没有构造器,也就无法在初始化过程中使用构造器给类型属性赋值
  • 存储型类型属性是延迟初始化的,它们只有在第一次被访问的时候才会被初始化。即使它们被多个线程同时访问,系统也保证只会对其进行一次初始化,并且不需要对其使用 lazy 修饰符。
(1)类型属性语法

使用关键字 static 来定义类型属性。在为类定义计算型类型属性时,可以改用关键字 class 来支持子类对父类的实现进行重写。

struct SomeStructure {
    static var storedTypeProperty = "Some value."
    static var computedTypeProperty: Int {
        return 1
    }
}
enum SomeEnumeration {
    static var storedTypeProperty = "Some value."
    static var computedTypeProperty: Int {
        return 6
    }
}
class SomeClass {
    static var storedTypeProperty = "Some value."
    static var computedTypeProperty: Int {
        return 27
    }
    class var overrideableComputedTypeProperty: Int {
        return 107
    }
}
(2)获取和设置类型属性的值

跟实例属性一样,类型属性也是通过点运算符来访问。但是,类型属性是通过类型本身来访问,而不是通过实例:

print(SomeStructure.storedTypeProperty)
// 打印“Some value.”
SomeStructure.storedTypeProperty = "Another value."
print(SomeStructure.storedTypeProperty)
// 打印“Another value.”
print(SomeEnumeration.computedTypeProperty)
// 打印“6”
print(SomeClass.computedTypeProperty)
// 打印“27”

下面的例子定义了一个结构体,使用两个存储型类型属性来表示两个声道的音量,把两个声道结合来模拟立体声的音量:

struct AudioChannel {
    static let thresholdLevel = 10
    static var maxInputLevelForAllChannels = 0
    var currentLevel: Int = 0 {
        didSet {
            if currentLevel > AudioChannel.thresholdLevel {
                // 将当前音量限制在阈值之内
                currentLevel = AudioChannel.thresholdLevel
            }
            if currentLevel > AudioChannel.maxInputLevelForAllChannels {
                // 存储当前音量作为新的最大输入音量
                AudioChannel.maxInputLevelForAllChannels = currentLevel
            }
        }
    }
}
var leftChannel = AudioChannel()
var rightChannel = AudioChannel()
leftChannel.currentLevel = 7
print(leftChannel.currentLevel)
// 输出“7”
print(AudioChannel.maxInputLevelForAllChannels)
// 输出“7”
rightChannel.currentLevel = 11
print(rightChannel.currentLevel)
// 输出“10”
print(AudioChannel.maxInputLevelForAllChannels)
// 输出“10”

你可能感兴趣的:(swift学习笔记(10)--- 属性)