丁磊力荐,吴军智能时代下的产品之道(接上一篇)

姓名:谢艾芳  学号:16040410073转自http://www.jianshu.com/p/cd88f6e99de6

〖嵌牛导读〗网易CEO的丁磊最近给大家极力推荐了吴军的《智能时代》,同时提到“人工智能技术在未来十年间将会影响我们生活的方方面面,我们的家具、娱乐、各种服务体验,将会发生颠覆性改变。”

〖嵌牛鼻子〗智能时代  产品的变与不变  我们该如何重新定位〖嵌牛提问〗在智能时代的大场景下,系统思考产品的变与不变,以及作为产品人的我们,该如何重新定位,抢得智能红利?

〖嵌牛正文〗

3、智能时代将诞生一种更高维的产品模式

最为关键的产品思维模式层面,也会发生巨大的变化。现在非常流行的精益创业的基本思维方式其实是基于假设不断验证迭代的过程。

具体地,可以看下面这张图,我们通过(1)基于同理心洞察的创新驱动,找到我们认为的一些用户痛点或创新的机会点,再通过(2)基于价值假设的精益创业来不断交付、验证以及调整。

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第1张图片
精益创业的产品模式
这是我们现在最流行的一种产品启动以及产品迭代的方式,而整个过程类似下面这张图:

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第2张图片
精益创业模式下的产品迭代的路线图

之所以会不断的调整产品迭代路线图,是因为我们的创业和创新处在极端不确定中,大家只能不断的假设,验证,再假设。在这个过程中我们只能比谁验证的成本更低,验证的速度更快,即所谓的“Fail Cheap,Fail Fast”。这几乎是一套事实上的产品思维。

而在人工智能时代下,在产品目标的驱动下,我们在某些场景下,可能不必再去假设了。而是直接通过构建和使用多维度,完备的大数据来去解决其中的不确定性问题(假设),再通过机器识别,直接得到模式(需求洞察以及行业洞察)直接去解决行业问题。

假想,你还在迷雾中航海,你只有通过不断假设以及验证去寻找到达彼岸方向的时候,别人则使用大数据和人工智能精准的制导,直接找到了解决问题的模式。哪个更快?哪个效率高?

就好比下面的经典案例,传统1.0的模式,不考虑用户的需求,直接做出一个蛋糕,结果发现不是用户需要的;而到了2.0的精益创业模式,为了验证用户的需求,我们采用MVP的方式,不断验证和调整我们的MVP,最终做出用户喜爱的蛋糕;而到了3.0大数据的模式识别模式,我们有可能基于大数据的多维度、完备性等特点直接得到一个更高效,用户更喜爱的蛋糕。

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第3张图片
几种产品模式的差异
而在智能时代,谁掌握了第三种产品思维模式可能会对第二种和第一种形成降维攻击和碾压。而掌握第三种产品思维模式的关键,可能不是优先关注“我洞察到了什么用户痛点或行业痛点”,而是优先考虑“看看我们掌握了多少数据,还需要什么数据,有了这些数据我们能干哪些事。”

再往下推想去,可能是这样一种常见,在传统行业里,谁率先让本行业数据先流动起来,优先形成闭环并重构行业效率,谁就占领了新的制高点。正如吴军所说:“谁掌握了信息,谁就能获取财富,就如同在工业时代,谁掌握了资本谁就能获取财富一样。”

产品的商业模式将以获取数据为主要目的,为了数据可以大量使用免费策略。而不光要获取数据,还要想着提供更多的数据连接和交换。这样,无疑会出现一个巨大的正反馈,拥有越多数据的公司,可以交换得到更多数据,得到更多数据,也就拥有了更多的信息和财富。至此,会出现大量的行业数据(或某些领域数据)的巨头,甚至是跨行业的数据巨头,他们会颠覆BAT,会成为下一个BAT。

另外,讲真,产品的内涵其实也悄然发生了变化,原先的产品内涵是:“为人提供服务或价值”,而现在人变成了人和机器人,或是像未来简史里面所描绘的:生物只是算法,生命只是算法的处理。那又会是一幅怎样的场景?

4、产品人需要关注哪些新的变化?

在前面所提及的第三种产品思维模式(智能时代下必备的思维模式)下,会出现如下产品数据流程:

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第4张图片
智能时代下的产品数据流程
我们可以看到对于不同的服务对象(2C、2B),产品上会呈现不同的新特点:

对于2C类(面向消费者市场)的产品,用户各维度的行为数据都会被平台所搜集,借由机器学习的算法,产品会千人千面:在不同的场合,不同的空间和时间里,你得到的产品服务是不一样的。同一时空下,两个人得到服务也是不一样的。产品会更加个性化和场景化。事实上,无论是亚马逊,Netfix(网飞),还是今日头条都已经在这条路上了,并通过此法构建了其产品核心竞争力。所以今日头条其实不是一家媒体公司,它是一家数据算法公司。

对于2B类(面向企业服务市场)的产品,效率仍然会是一个最为关注的关键词。卫哲在混沌研习社中做过一次“提升效率”为主题的分享,其中包括:个人效率、组织效率、资产效率、战略效率、创新效率五个大板块。

从当下的日益饱和和被透支的消费者市场来看,面向企业服务市场的效率提升会是一个主要机会点。而围绕此展开的,有两个方面:一方面大量的XAAS公司来作为底层支撑去提升公司的各维度效率,另一方面,来自行业内的公司,会有一些人率先站出来,构建行业数据的全流程采集,以及数据分析处理的闭环,并尝试使用通过大数据的方式去洞察一些行业痛点和机会点。

其实B类产品和C类产品都绕不开效率,举个例子,时下最火的共享经济就其本质就是效率,更准确的讲是追求资产利用率。

比如对于摩拜单车、OFO的模式关键不在于有多少辆车,而是每辆车每天的使用率。如果车的使用率低,那就是一个效率低的公司。

还以共享单车为例,我们已经不再购买商品(自行车),我们购买服务,商品是按照计划生产出来的,有多少用户我们是完全知道的,有多少用户使用了自行车我们也是知道的。如果全球的自行车都是共享单车的话,我们就知道全球多少人使用、还需要多少辆自行车。而这种模式最有话语权的既不是自行车的厂家,也不是消费者,而是中间的平台调度公司,即大数据算法公司。

就像未来简史里面提到的,算法会成为像公司以及国家这样的实体,掌握人类。

在未来IoT+机器智能为共享经济带来了可能。在共享经济里面,连接比拥有(内容)更重要。Google、Facebook没有内容,阿里没有商品,微信没有网络,滴滴,uber、AirBnB没有车和房屋。

现在愈演愈烈的共享经济(AirBnB、滴滴、共享单车、共享充电等)只是人工智能大展拳脚的一个市场切入点。

也许,真的如吴军在智能时代中所说,从局部到整体,我们实现智能化社会,从整体到局部,我们实现的社会的精细化。

5、智能时代会涌现哪些产品机会?

智能时代下的产品服务类型大致会有这样的构成:

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第5张图片
智能时代下的产品服务模型
第一种的产品服务类型,提供包括从数据采集、数据分析处理、机器学习等基础技术能力的产品服务。比如,像Google、Facebook、baidu等。

第二种产品服务类型,则是前面提到的,行业内的公司自己构建本行业或跨行业的数据采集、分析、处理的闭环。成为该行业数据服务以及信息服务的关键结点。在这点上,面向消费者,面向企业或是面向政府的应用本质上差异不大。

这意味着,传统行业立足行业之本,依然大有可为。而且也与互联网+的大潮十分契合。

除了前面两大海量市场外,绝大部分面向终端服务的产品类型会是怎样一种场景呢?

其实,早在20年前,哈佛商业评论(HBR,1998)就提到了体验经济的趋势及其价值模型,并提到:产品的体验越好,越有差异性,就越能获得更高的价值这一发展趋势。

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第6张图片
经济发展的价值模型
其实这个规律一直没有变,且我们还有很多东西可做。

在2016年的哈佛商业评论(HBR.ORG 2016.9)中提到产品的需求金字塔模型(见下),在该模型中,产品的需求自下而上分为,功能,情感,自我实现以及社会影响力等。总体的趋势是,如果能覆盖到越高的层次,用户的忠诚度越高,产品的价值敏感性也越高。

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第7张图片
产品需求金字塔模型
唯有创新,才有不同,唯有不同,才有高利。

我曾经在《产品拆解:透析网易云音乐背后的造物逻辑》中提到网易云音乐能在不到4年的时间发展3亿用户,能在BAT的布局的音乐红海市场中杀出一条血路,能成为中国最有口碑的音乐产品的核心在于其构建了一套具有诗意交互的体验框架。曾经也不止一位小伙伴告诉我,网易云音乐是其唯一愿意付费的音乐产品。事实证明,其也在4月初拿到A轮融资,估值80亿。

丁磊力荐,吴军智能时代下的产品之道(接上一篇)_第8张图片
网易云音乐的核心体验框架:具有诗意的交互
当然,机器人最终也会拥有情感。

唐纳德·A·诺曼在《情感化设计》中提到,机器也最终会有情感,虽然机器的情感与人的情感不一样,但是我们需要机器有理解主人情感状态的能力。同时机器具备积极的情感会不断的改进,而具备消极的情感则可以适当的保护自己。甚至是挫败感和自豪感都可以帮助更好地完成任务(情感化设计,P176)。不过距离这一天至少还有很长的一段距离。

6、小结:未来已来,我们准备好了吗?

本文回顾了吴军智能时代下的奇妙场景,并尝试通过两个第一性原理(First Principle),即信息论第二定律以及底层技术(生产力)决定上层生产关系,来眺望互联网浪潮的下一波红利,及其真实的底层驱动力。

更进一步地,本文着重分析了智能时代下将诞生一种更加高纬度的产品思维模式,其创新性和效率远超时下最流行的精益创业的思维模式。

这种高纬度的产品思维模式将推进整个2C以及2B产品形态的升级换代,2C的产品的竞争力在于数据洞察后的千人千面,更加个性化和场景化;而2B的产品竞争力在体现数据闭环所提升的效率。愈演愈烈的共享经济(共享单车等)则是这种思维模式以及产品形态的一个缩影。

吴军说,那么成为那2%,那么则被淘汰。而本文则认为,显然机会和挑战并存,尤其对于传统行业,谁优先构建数据闭环,优先成为该行业数据服务以及信息服务的关键结点,谁就有可能在本行业抢占先机。

当然体验经济依然是值得大家关注和突破的领域,做好极致体验,你会让你的产品由价格敏感提升为价值敏感。

丹尼尔·平克在《全新思维》中,他敏锐地察觉到,人类社会已经步入“右脑时代”,在这个时代,知识不再是力量。他开创性地指出:未来属于那些拥有与众不同思维的人,唯有拥有右脑时代的6大全新思维能力:设计感、娱乐感、意义感、故事力、交响力、共情力,即“三感三力”,才能于决胜于未来。

可以预测到,产品经理会至少分化成两种角色,数据产品经理或算法产品经理可能是一类崛起的岗位,他们更侧重左脑思维,也会和当前的一些开发岗位形成融合。超过6位数年薪的数据科学家可见一斑。

而原先的产品经理,可能更多的偏向社会学,心理学,设计学等多学科综合的岗位,他们更侧重右脑思维。

著名未来学家彼得•伊利亚德说:“今天我们如果不生活在未来,那么未来我们将生活在过去。”

未来已来,你会怎么选择呢?或许在数据和算法面前,我们已别无选择额。

你可能感兴趣的:(丁磊力荐,吴军智能时代下的产品之道(接上一篇))