学习函数式编程初衷是看到自己熟悉的oop编程语言和sql数据库在现代商业社会中前景暗淡,准备完全放弃windows技术栈转到分布式大数据技术领域的。但是在现实中理想总是不如人意,本来想在一个规模较小的公司展展拳脚,以为小公司会少点历史包袱,有利于全面技术改造。但现实是:即使是小公司,一旦有个成熟的产品,那么进行全面的技术更新基本上是不可能的了,因为公司要生存,开发人员很难新旧技术之间随时切换。除非有狂热的热情,员工怠慢甚至抵制情绪不容易解决。只能采取逐步切换方式:保留原有产品的后期维护不动,新产品开发用一些新的技术。在我们这里的情况就是:以前一堆c#、sqlserver的东西必须保留,新的功能比如大数据、ai、识别等必须用新的手段如scala、python、dart、akka、kafka、cassandra、mongodb来开发。好了,新旧两个开发平台之间的软件系统对接又变成了一个问题。
现在我们这里有个需求:把在linux-ubuntu akka-cluster集群环境里mongodb里数据处理的结果传给windows server下SQLServer里。这是一种典型的异系统集成场景。我的解决方案是通过一个restapi服务作为两个系统的数据桥梁,这个restapi的最基本要求是:
1、支持任何操作系统前端:这个没什么问题,在http层上通过json交换数据
2、能读写mongodb:在前面讨论的restapi-mongo已经实现了这一功能
3、能读写windows server环境下的sqlserver:这个是本篇讨论的主题
4、用户能够比较方便的对平台数据库进行操作,最好免去前后双方每类操作都需要进行协定model这一过程,也就是能达到用户随意调用服务
前面曾经实现了一个jdbc-engine项目,基于scalikejdbc,不过只示范了slick-h2相关的功能。现在需要sqlserver-jdbc驱动,然后试试能不能在JVM里驱动windows下的sqlserver。maven里找不到sqlserver的驱动,但从微软官网可以下载mssql-jdbc-7.0.0.jre8.jar。这是个jar,在sbt里称作unmanagedjar,不能摆在build.sbt的dependency里。这个需要摆在项目根目录下的lib目录下即可(也可以在放在build.sbt里unmanagedBase :=?? 指定的路径下)。然后是数据库连接,下面是可以使用sqlserver的application.conf配置文件内容:
# JDBC settings
prod {
db {
h2 {
driver = "org.h2.Driver"
url = "jdbc:h2:tcp://localhost/~/slickdemo"
user = ""
password = ""
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
}
mysql {
driver = "com.mysql.cj.jdbc.Driver"
url = "jdbc:mysql://localhost:3306/testdb"
user = "root"
password = "123"
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
}
postgres {
driver = "org.postgresql.Driver"
url = "jdbc:postgresql://localhost:5432/testdb"
user = "root"
password = "123"
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
}
mssql {
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
url = "jdbc:sqlserver://192.168.11.164:1433;integratedSecurity=false;Connect Timeout=3000"
user = "sa"
password = "Tiger2020"
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
connectionTimeout = 3000
}
termtxns {
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=TERMTXNS;integratedSecurity=false;Connect Timeout=3000"
user = "sa"
password = "Tiger2020"
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
connectionTimeout = 3000
}
crmdb {
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=CRMDB;integratedSecurity=false;Connect Timeout=3000"
user = "sa"
password = "Tiger2020"
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
connectionTimeout = 3000
}
}
# scallikejdbc Global settings
scalikejdbc.global.loggingSQLAndTime.enabled = true
scalikejdbc.global.loggingSQLAndTime.logLevel = info
scalikejdbc.global.loggingSQLAndTime.warningEnabled = true
scalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000
scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warn
scalikejdbc.global.loggingSQLAndTime.singleLineMode = false
scalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = false
scalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
}
这个文件里的mssql,termtxns,crmdb段落都是给sqlserver的,它们都使用hikaricp线程池管理。
在jdbc-engine里启动数据库方式如下:
ConfigDBsWithEnv("prod").setup('termtxns)
ConfigDBsWithEnv("prod").setup('crmdb)
ConfigDBsWithEnv("prod").loadGlobalSettings()
这段打开了在配置文件中用termtxns,crmdb注明的数据库。
下面是SqlHttpServer.scala的代码:
package com.datatech.rest.sql
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import pdi.jwt._
import AuthBase._
import MockUserAuthService._
import com.datatech.sdp.jdbc.config.ConfigDBsWithEnv
import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import Repo._
import SqlRoute._
object SqlHttpServer extends App {
implicit val httpSys = ActorSystem("sql-http-sys")
implicit val httpMat = ActorMaterializer()
implicit val httpEC = httpSys.dispatcher
ConfigDBsWithEnv("prod").setup('termtxns)
ConfigDBsWithEnv("prod").setup('crmdb)
ConfigDBsWithEnv("prod").loadGlobalSettings()
implicit val authenticator = new AuthBase()
.withAlgorithm(JwtAlgorithm.HS256)
.withSecretKey("OpenSesame")
.withUserFunc(getValidUser)
val route =
path("auth") {
authenticateBasic(realm = "auth", authenticator.getUserInfo) { userinfo =>
post { complete(authenticator.issueJwt(userinfo))}
}
} ~
pathPrefix("api") {
authenticateOAuth2(realm = "api", authenticator.authenticateToken) { token =>
new SqlRoute("sql", token)(new JDBCRepo)
.route
// ~ ...
}
}
val (port, host) = (50081,"192.168.11.189")
val bindingFuture = Http().bindAndHandle(route,host,port)
println(s"Server running at $host $port. Press any key to exit ...")
scala.io.StdIn.readLine()
bindingFuture.flatMap(_.unbind())
.onComplete(_ => httpSys.terminate())
}
服务入口在http://mydemo.com/api/sql,服务包括get,post,put三类,参考这个SqlRoute:
package com.datatech.rest.sql
import akka.http.scaladsl.server.Directives
import akka.stream.ActorMaterializer
import akka.http.scaladsl.model._
import akka.actor.ActorSystem
import com.datatech.rest.sql.Repo.JDBCRepo
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
trait JsFormats extends SprayJsonSupport with DefaultJsonProtocol
object JsConverters extends JsFormats {
import SqlModels._
implicit val brandFormat = jsonFormat2(Brand)
implicit val customerFormat = jsonFormat6(Customer)
}
object SqlRoute {
import JsConverters._
implicit val jsonStreamingSupport = EntityStreamingSupport.json()
.withParallelMarshalling(parallelism = 8, unordered = false)
class SqlRoute(val pathName: String, val jwt: String)(repo: JDBCRepo)(
implicit sys: ActorSystem, mat: ActorMaterializer) extends Directives with JsonConverter {
val route = pathPrefix(pathName) {
path(Segment / Remaining) { case (db, tbl) =>
(get & parameter('sqltext)) { sql => {
val rsc = new RSConverter
val rows = repo.query[Map[String,Any]](db, sql, rsc.resultSet2Map)
complete(rows.map(m => toJson(m)))
}
} ~ (post & parameter('sqltext)) { sql =>
entity(as[String]){ json =>
repo.batchInsert(db,tbl,sql,json)
complete(StatusCodes.OK)
}
} ~ put {
entity(as[Seq[String]]) { sqls =>
repo.update(db, sqls)
complete(StatusCodes.OK)
}
}
}
}
}
}
jdbc-engine的特点是可以用字符类型的sql语句来操作。所以我们可以通过传递字符串型的sql语句来实现服务调用,使用门槛低,方便通用。restapi-sql提供的是对服务器端sqlserver的普通操作,包括读get,写入post,更改put。这些sqlserver操作部分是在JDBCRepo里的:
package com.datatech.rest.sql
import com.datatech.sdp.jdbc.engine.JDBCEngine._
import com.datatech.sdp.jdbc.engine.{JDBCQueryContext, JDBCUpdateContext}
import scalikejdbc._
import akka.stream.ActorMaterializer
import com.datatech.sdp.result.DBOResult.DBOResult
import akka.stream.scaladsl._
import scala.concurrent._
import SqlModels._
object Repo {
class JDBCRepo(implicit ec: ExecutionContextExecutor, mat: ActorMaterializer) {
def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {
//construct the context
val ctx = JDBCQueryContext(
dbName = Symbol(db),
statement = sqlText
)
jdbcAkkaStream(ctx,toRow)
}
def query(db: String, tbl: String, sqlText: String) = {
//construct the context
val ctx = JDBCQueryContext(
dbName = Symbol(db),
statement = sqlText
)
jdbcQueryResult[Vector,RS](ctx,getConverter(tbl)).toFuture[Vector[RS]]
}
def update(db: String, sqlTexts: Seq[String]): DBOResult[Seq[Long]] = {
val ctx = JDBCUpdateContext(
dbName = Symbol(db),
statements = sqlTexts
)
jdbcTxUpdates(ctx)
}
def bulkInsert[P](db: String, sqlText: String, prepParams: P => Seq[Any], params: Source[P,_]) = {
val insertAction = JDBCActionStream(
dbName = Symbol(db),
parallelism = 4,
processInOrder = false,
statement = sqlText,
prepareParams = prepParams
)
params.via(insertAction.performOnRow).to(Sink.ignore).run()
}
def batchInsert(db: String, tbl: String, sqlText: String, jsonParams: String):DBOResult[Seq[Long]] = {
val ctx = JDBCUpdateContext(
dbName = Symbol(db),
statements = Seq(sqlText),
batch = true,
parameters = getSeqParams(jsonParams,sqlText)
)
jdbcBatchUpdate[Seq](ctx)
}
}
import monix.execution.Scheduler.Implicits.global
implicit class DBResultToFuture(dbr: DBOResult[_]){
def toFuture[R] = {
dbr.value.value.runToFuture.map {
eor =>
eor match {
case Right(or) => or match {
case Some(r) => r.asInstanceOf[R]
case None => throw new RuntimeException("Operation produced None result!")
}
case Left(err) => throw new RuntimeException(err)
}
}
}
}
}
读query部分即 def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {...} 这个函数返回Source[R,Any],下面我们好好谈谈这个R:R是读的结果,通常是某个类或model,比如读取Person记录返回一组Person类的实例。这里有一种强类型的感觉。一开始我也是随大流坚持建model后用toJson[E],fromJson[E]这样做线上数据转换。现在的问题是restapi-sql是一项公共服务,使用者知道sqlserver上有些什么表,然后希望通过sql语句来从这些表里读取数据。这些sql语句可能超出表的界限如sql join, union等,如果我们坚持每个返回结果都必须有个对应的model,那么显然就会牺牲这个服务的通用性。实际上,http线上数据交换本身就不可能是强类型的,因为经过了json转换。对于json转换来说,只要求字段名称、字段类型对称就行了。至于从什么类型转换成了另一个什么类型都没问题。所以,字段名+字段值的表现形式不就是Map[K,V]吗,我们就用Map[K,V]作为万能model就行了,没人知道。也就是说用户方通过sql语句指定返回的字段名称,它们可能是任何类型Any,具体类型自然会由数据库补上。服务方从数据库读取结果ResultSet后转成Map[K,V]然后再转成json返回给用户,用户可以用Map[String,Any]信息产生任何类型,这就是自主。好,就来看看如何将ResultSet转成Map[String,Any]:
package com.datatech.rest.sql import scalikejdbc._ import java.sql.ResultSetMetaData class RSConverter { import RSConverterUtil._ var rsMeta: ResultSetMetaData = _ var columnCount: Int = 0 var rsFields: List[(String,String)] = List[(String,String)]() def getFieldsInfo:List[(String,String)] = ( 1 until columnCount).foldLeft(List[(String,String)]()) { case (cons,i) => (rsMeta.getColumnLabel(i) -> rsMeta.getColumnTypeName(i)) :: cons } def resultSet2Map(rs: WrappedResultSet): Map[String,Any] = { if(columnCount == 0) { rsMeta = rs.underlying.getMetaData columnCount = rsMeta.getColumnCount rsFields = getFieldsInfo } rsFields.foldLeft(Map[String,Any]()) { case (m,(n,t)) => m + (n -> rsFieldValue(n,t,rs)) } } } object RSConverterUtil { import scala.collection.immutable.TreeMap def map2Params(stm: String, m: Map[String,Any]): Seq[Any] = { val sortedParams = m.foldLeft(TreeMap[Int,Any]()) { case (t,(k,v)) => t + (stm.indexOfSlice(k) -> v) } sortedParams.map(_._2).toSeq } def rsFieldValue(fldname: String, fldType: String, rs: WrappedResultSet): Any = fldType match { case "LONGVARCHAR" => rs.string(fldname) case "VARCHAR" => rs.string(fldname) case "CHAR" => rs.string(fldname) case "BIT" => rs.boolean(fldname) case "TIME" => rs.time(fldname) case "TIMESTAMP" => rs.timestamp(fldname) case "ARRAY" => rs.array(fldname) case "NUMERIC" => rs.bigDecimal(fldname) case "BLOB" => rs.blob(fldname) case "TINYINT" => rs.byte(fldname) case "VARBINARY" => rs.bytes(fldname) case "BINARY" => rs.bytes(fldname) case "CLOB" => rs.clob(fldname) case "DATE" => rs.date(fldname) case "DOUBLE" => rs.double(fldname) case "REAL" => rs.float(fldname) case "FLOAT" => rs.float(fldname) case "INTEGER" => rs.int(fldname) case "SMALLINT" => rs.int(fldname) case "Option[Int]" => rs.intOpt(fldname) case "BIGINT" => rs.long(fldname) } }
这段主要功能是将JDBC的ResultSet转换成Map[String,Any]。在前面讨论的restapi-mongo我们可以进行Document到Map[String,Any]的转换以实现同样的目的。
下面是个调用query服务的例子:
val getAllRequest = HttpRequest(
HttpMethods.GET,
uri = "http://192.168.11.189:50081/api/sql/termtxns/brand?sqltext=SELECT%20*%20FROM%20BRAND",
).addHeader(authentication)
(for {
response <- Http().singleRequest(getAllRequest)
json <- Unmarshal(response.entity).to[String]
} yield message).andThen {
case Success(msg) => println(s"Received json collection: $json")
case Failure(err) => println(s"Error: ${err.getMessage}")
}
特点是我只需要提供sql语句,服务就会返回一个json数组,然后我怎么把json转成任何类型就随我高兴了。
再看看post服务:在这里希望实现一种批次型插入表的功能,比如从一个数据表里把数据搬到另外一个表。一般来讲在jdbc操作里首先得提供一个模版,如:insert into person(fullname,code) values(?,?),然后通过提供一组参数值来实现批次插入。当然,为安全起见,我们还是需要确定正确的参数位置,这个可以从sql语句里获取:
def map2Params(stm: String, m: Map[String,Any]): Seq[Any] = {
val sortedParams = m.foldLeft(TreeMap[Int,Any]()) {
case (t,(k,v)) => t + (stm.toUpperCase.indexOfSlice(k.toUpperCase) -> v)
}
sortedParams.map(_._2).toSeq
}
def getSeqParams(json: String, sql: String): Seq[Seq[Any]] = {
val seqOfjson = fromJson[Seq[String]](json)
val prs = seqOfjson.map(fromJson[Map[String,Any]])
prs.map(RSConverterUtil.map2Params(sql,_))
}
下面是个批次插入的示范代码:
val encodedSelect = URLEncode.encode("select id as code, name as fullname from members")
val encodedInsert = URLEncode.encode("insert into person(fullname,code) values(?,?)")
val getMembers = HttpRequest(
HttpMethods.GET,
uri = "http://192.168.0.189:50081/api/sql/h2/members?sqltext="+encodedSelect
).addHeader(authentication)
val postRequest = HttpRequest(
HttpMethods.POST,
uri = "http://192.168.0.189:50081/api/sql/h2/person?sqltext="+encodedInsert,
).addHeader(authentication)
(for {
_ <- update("http://192.168.0.189:50081/api/sql/h2/person",Seq(createCTX))
respMembers <- Http().singleRequest(getMembers)
message <- Unmarshal(respMembers.entity).to[String]
reqEntity <- Marshal(message).to[RequestEntity]
respInsert <- Http().singleRequest(postRequest.copy(entity = reqEntity))
// HttpEntity(ContentTypes.`application/json`,ByteString(message))))
} yield respInsert).onComplete {
case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>
println("builk insert successful!")
case Success(_) => println("builk insert failed!")
case Failure(err) => println(s"Error: ${err.getMessage}")
}
你看,我特别把参数值清单里字段位置和insert sql里字段先后位置颠倒了,但还是得到正确的结果。
最后是put:这是为批次型的事物处理设计的。接受一条或者多条无参数sql指令,多条指令会在一个事物中执行。具体使用方式如下:
def update(url: String, cmds: Seq[String])(implicit token: Authorization): Future[HttpResponse] =
for {
reqEntity <- Marshal(cmds).to[RequestEntity]
response <- Http().singleRequest(HttpRequest(
method=HttpMethods.PUT,uri=url,entity=reqEntity)
.addHeader(token))
} yield response
在上面的讨论里介绍了基于sqlserver的rest服务,与前面讨论的restapi-mongo从原理上区别并不大,重点是实现了用户主导的数据库操作。