Codeforces Round #608 (Div. 2) 题解

目录

  • Codeforces Round #608 (Div. 2) 题解
    • 前言
    • A. Suits
      • 题意
      • 做法
      • 程序
    • B. Blocks
      • 题意
      • 做法
      • 程序
    • C. Shawarma Tent
      • 题意
      • 做法
      • 程序
    • D. Portals
      • 题意
      • 做法
      • 程序
    • E. Common Number
      • 题意
      • 做法
      • 程序
    • 结束语

Codeforces Round #608 (Div. 2) 题解

前言

题目链接:仅仅只是为了方便以题目作为关键字能查找到我的题解而已(逃

Codeforces 1271A

Codeforces 1271B

Codeforces 1271C

Codeforces 1271D

Codeforces 1271E

重要:没有F的题解,想看F题题解的神仙们可以走了

A. Suits

题意

给你\(a\)条领带,\(b\)条围巾、\(c\)件背心、\(d\)件夹克,有以下两种套装:

  • 一条领带、一件夹克,花费\(e\)

  • 一条围巾、一件背心、一件夹克,花费\(f\)

求出最多可以卖多少钱(不能单卖)。(奸商)

做法

依题意可得:

假如有\(i\)\(e\)元的套装,那么就是价格是\(i \times e + min \{ d-i, b, c \} \times f\)元,枚举即可(注意 \(i\), \(d-i\), \(b\), \(c\) 中不能出现负数)。

程序

#include
using namespace std;

int a,b,c,d,e,f,ans;

int main(){

    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin>>a>>b>>c>>d>>e>>f;
    for(int i=0;i<=min(a,d);i++){//数据范围小,直接暴力枚举
        ans=max(ans,i*e+min((d-i),min(b,c))*f);
    }
    cout<

B. Blocks

FST的我真的是太菜了

题意

给你一排\(n\)个方块,每个方块有黑白两种颜色,每次操作可以反转两个相邻的方块的颜色,问能否\(3n\)次数内反转成一整排都是同一种颜色。

做法

假设序列反转成白色,那么从前到后跑一遍,如果当前方块不是白色就反转它和它后边的方块,最后一个方块如果跑完操作完是白色就OK。黑色同理,假设序列反转成黑色,那么从前到后跑一遍,如果当前方块不是黑色就反转它和它后边的方块,最后一个方块如果跑完操作完是黑色就OK。最后如果都不可以就输出\(-1\)了。

程序

#include
using namespace std;

int n;
char s[205];
vector op;

int main(){

    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin>>n;
    cin>>s+1;
    //假设全是白色:
    for(int i=1;i

C. Shawarma Tent

比B简单

题意

给你一个平面直角坐标系(刚刚数学课学过诶),之后给你一座学校和\(n\)个学生的坐标(都是整点),问你在一个不同于学校的整点上建一个买Shawarma的帐篷,如果学生从学校到家的某一条神奇路径上经过就会买(当消费者傻子吗),问你最多会有几个学生买,和此时帐篷的坐标(任意一种坐标即可)(奸商)

注:整点指横坐标、纵坐标都是整数的点。神奇路径是只能上下左右移动(平行于横轴或纵轴)的两点间的最短路径(长度就是两点间的曼哈顿距离)(两点间可能有多条)。

做法

显然的,距离学校越近,就会有越多学生从帐篷经过,所以只要枚举学校上下左右的四个点看哪个最优就可以了。

程序

#include
using namespace std;

int n,sx,sy;
int x[200005],y[200005];
int l,r,u,d;
//l, r, u, d 分别表示左右上下的帐篷经过的学生个数

int main(){

    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin>>n>>sx>>sy;
    for(int i=1;i<=n;i++){
        cin>>x[i]>>y[i];
        if(x[i]>sx)r++;
        if(x[i]sy)u++;
        if(y[i]=l&&r>=r&&r>=u&&r>=d){
        cout<=l&&l>=r&&l>=u&&l>=d){
        cout<=l&&u>=r&&u>=u&&u>=d){
        cout<=l&&d>=r&&d>=u&&d>=d){
        cout<=u之类只是方便copy&paste罢了

    return 0;
}

D. Portals

题面好长啊,真的不想翻译

题意

你要攻下\(n\)座城市。一开始你有\(k\)个士兵。攻下第\(i\)个城市,你需要\(a_i\)个士兵(进攻时不损失士兵),攻下后你会抓\(b_i\)个壮丁扩充你的队伍,攻下后你可以派一个士兵来防守,防守会使得你的分数增加\(c_i\),损失一个士兵。防守有两种方式:

  • 你可以防守你所在的第\(i\)个城市

  • \(m\)个单向的传送门,从\(u\)\(v\),如果你在\(u\),可以派兵防守\(v\)(必须是直接被传送门连接的城市)

你必须从第\(1\)座一直攻克到第\(n\)座城市,如果不能攻克全部城市,你就输了,输出\(-1\),如果能赢,求出最大的分数。

做法

贪心的做,计算\(req_i = max \{ a_{i+1} , req_{i+1} - b_{i+1} \} | req_n = 0\)代表在第\(i\)个城市攻克并有\(b_i\)士兵加入后,你完成游戏最少需要的士兵。之后就会有部分士兵空出,第\(i\)个城市空出士兵个数记为\(fr_i\),然后用大根堆来分派士兵到城市就好了。

此时,第\(i\)个城市的可以守卫它的最后一个城市记为\(def_i\),从\(1\)\(i\)的空闲士兵显然都可以守卫它(空闲士兵可以跟着你到下一个城市)。

程序

#include
using namespace std;

int n,m,k;
int a[5005],b[5005],c[5005],fr[5005];
vector g[5005];//无用数组
int def[5005],req[5005];
priority_queue > pq;
int ans;

int main(){

    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin>>n>>m>>k;
    for(int i=1;i<=n;i++){
        cin>>a[i]>>b[i]>>c[i];
        def[i]=i;
    }
    for(int i=1;i<=m;i++){
        int u,v;
        cin>>u>>v;
        g[u].push_back(v);//无用语句
        def[v]=max(def[v],u);
    }
    for(int i=n;i>=1;i--){
        req[i]=max(a[i+1],req[i+1]-b[i+1]);cerr<0)y--;
        if(y==0)continue;
        fr[y]--;//贪心地选择最后一个能选的城市的空闲士兵
        ans+=val;
    }
    cout<

E. Common Number

题意

做到E的人应该都知道吧。。。而且题面很简短我就不写了(逃

做法

定义\(k_i\)为包含\(i\)的路径的个数。

首先,奇数和偶数分开考虑,你会发现同一个\(n\),同为奇数或偶数时,\(y\)变大了\(k_y\)肯定变小,所以具有单调性,可以二分。

我们再来看对于单个的数,如何计算包含它的路径条数:

把路径的计算反过来想,可以得出在路径的反推中,只有偶数可以加一,而所有数都可以乘二。记录有多少个可以通过这种方式得到的数就可以了。但是这样太慢了,所以我们需要一个更快的方法:

通过观察得出,乘二的次数相同时,从最小可达值(只乘过二)到最大可达值(每次乘二后都加一),之间的所有数都是可以达到的,那么我们只要计算最小值和最大值就好了,复杂度--。由于乘二肯定比加一增长得快,所以对于每一种乘以二的次数,把这个区间的长度加到路径条数就可以了。

程序

#include
using namespace std;

typedef long long ll;

ll n,k;

bool check(ll m){
    ll l=m,r=m,res=0;
    if(!(m&1)){r++;}//当m是偶数时给r增加1
    for(int i=1;;i++){//其实i没有什么用
        res+=min(n,r)-l+1;//添加区间长度到返回值
        //for(int j=l;j<=min(r,n);j++)cerr<n)break;//当l大于n时就没有计算的必要了,直接退出
        
    }//cerr<=k;
}

int main(){

    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    cin>>n>>k;
    //for(int i=1;i<=n;i++)check(i);
    ll l=1,r=(n+1)/2,m,ans;//二分奇数
    while(l<=r){
        m=(l+r)>>1;
        if(check(2*m-1)){
            ans=2*m-1;
            l=m+1;
        }else{
            r=m-1;
        }
    }
    l=1;r=n/2;//二分偶数
    while(l<=r){
        m=(l+r)>>1;
        if(check(2*m)){
            ans=max(ans,2*m);//由于ans已经取了奇数的值,所以这里是max
            l=m+1;
        }else{
            r=m-1;
        }
    }
    cout<

结束语

点个在看吧!

很抱歉不会F题不能帮到部分人,所以我(逃

你可能感兴趣的:(Codeforces Round #608 (Div. 2) 题解)