Kubernetes(通常称为"K8S")是Google开源的容器集群管理系统。其设计目标是在主机集群之间提供一个能够自动化部署、可拓展、应用容器可运营的平台。Kubernetes通常结合docker容器工具工作,并且整合多个运行着docker容器的主机集群,Kubernetes不仅仅支持Docker,还支持Rocket,这是另一种容器技术。Kubernetes是一个用于容器集群的自动化部署、扩容以及运维的开源平台

通过Kubernetes, 可以快速有效地响应用户需求:

  快速而有预期地部署应用;
  极速地扩展你的应用;
  无缝对接新的应用功能;
  节省资源,优化硬件资源的使用;

Kubernetes功能特性:

  自动化容器部署与复制
  随时扩展或收缩容器规模
  组织容器成组,提供容器间的负载均衡
  快速更新及回滚容器版本
*  提供弹性伸缩,如果某个容器失效就进行替换

Kubernetes重要组件:

1)Master组件
Master节点上面主要由四个模块组成:APIServer、scheduler、controller manager、etcd
   APIServer: 负责对外提供RESTful的Kubernetes API服务,它是系统管理指令的统一入口,任何对资源进行增删改查的操作都要交给APIServer处理后再提交给etcd。kubectl(k8s提供的客户端工具,该工具内部就是对Kubernetes API的调用)是直接和APIServer交互的。
    schedule: 它的职责很明确,就是负责调度pod到合适的Node上。如果把scheduler看成一个黑匣子,那么它的输入是pod和由多个Node组成的列表,输出是Pod和一个Node的绑定,即将这个pod部署到这个Node上。Kubernetes目前提供了调度算法,但是同样也保留了接口,用户可以根据自己的需求定义自己的调度算法。
   controller manager: 如果说APIServer做的是“前台”的工作的话,那controller manager就是负责“后台”的。每个资源一般都对应有一个控制器,而controller manager就是负责管理这些控制器的。比如我们通过APIServer创建一个pod,当这个pod创建成功后,APIServer的任务就算完成了。而后面保证Pod的状态始终和我们预期的一样的重任就由controller manager去保证了。
  etcd: 它是一个高可用的键值存储系统,Kubernetes使用它来存储各个资源的状态,从而实现了Restful的API。

2)Node组件
每个Node节点主要由三个模块组成:kubelet、kube-proxy、runtime。
runtime。runtime指的是容器运行环境,目前Kubernetes支持docker和rkt两种容器。
  kubelet:Kubelet是Master在每个Node节点上面的agent,是Node节点上面最重要的模块,它负责维护和管理该Node上面的所有容器,但是如果容器不是通过Kubernetes创建的,它并不会管理。本质上,它负责使Pod得运行状态与期望的状态一致。
  kube-proxy:该模块实现了Kubernetes中的服务发现和反向代理功能。反向代理方面:kube-proxy支持TCP和UDP连接转发,默认基于Round Robin算法将客户端流量转发到与service对应的一组后端pod。服务发现方面,kube-proxy使用etcd的watch机制,监控集群中service和endpoint对象数据的动态变化,并且维护一个service到endpoint的映射关系,从而保证了后端pod的IP变化不会对访问者造成影响。另外kube-proxy还支持session affinity。

3)Pod
Pod是k8s进行资源调度的最小单位,每个Pod中运行着一个或多个密切相关的业务容器,这些业务容器共享这个Pause容器的IP和Volume,我们以这个不易死亡的Pause容器作为Pod的根容器,以它的状态表示整个容器组的状态。一个Pod一旦被创建就会放到Etcd中存储,然后由Master调度到一个Node绑定,由这个Node上的Kubelet进行实例化。每个Pod会被分配一个单独的Pod IP,Pod IP + ContainerPort 组成了一个Endpoint。

4)Service
Service其功能使应用暴露,Pods 是有生命周期的,也有独立的 IP 地址,随着 Pods 的创建与销毁,一个必不可少的工作就是保证各个应用能够感知这种变化。这就要提到 Service 了,Service 是 YAML 或 JSON 定义的由 Pods 通过某种策略的逻辑组合。更重要的是,Pods 的独立 IP 需要通过 Service 暴露到网络中。

K8s集群可以帮助培育出一个组件及工具的生态,帮助减轻在公有云及私有云上运行应用的负担。之前已经详细介绍了Kubernetes的概念和原理, 对Kubernetes集群部署做一整理和记录,方便后续作为手册来用(参考来源)。

搭建Kubernetes集群环境有以下三种方式:

1. **Minikube安装方式
Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,尝试Kubernetes或日常开发的用户使用。但是这种方式仅可用于学习和测试部署,
不能用于生产环境**。

2. Kubeadm安装方式
kubeadm是一个kubernetes官方提供的快速安装和初始化拥有最佳实践(best practice)的kubernetes集群的工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群。目前kubeadm还处于beta 和alpha状态,不推荐用在生产环境,但是可以通过学习这种部署方法来体会一些官方推荐的kubernetes最佳实践的设计和思想。

kubeadm的目标是提供一个最小可用的可以通过Kubernetes一致性测试的集群,所以并不会安装任何除此之外的非必须的addon。kubeadm默认情况下并不会安装一个网络解决方案,所以用kubeadm安装完之后,需要自己来安装一个网络的插件。所以说,目前的kubeadm是不能用于生产环境的

3. 二进制包安装方式**(生产部署的推荐方式)
从官方下载发行版的二进制包,手动部署每个组件,组成Kubernetes集群,这种方式符合企业生产环境标准的Kubernetes集群环境的安装,
可用于生产方式部署**。

一、基础信息

使用Kubernetes1.14.2,所有节点机操作系统是Centos7.5。本文档部署中所需kubernetes相关安装包和镜像可提前在***服务器上下载,然后同步到k8s部署机器上。具体信息如下:

ip地址 主机名 角色
172.16.60.241 k8s-master01 主节点1、etc节点1
172.16.60.242 k8s-master02 主节点2、etc节点2
172.16.60.243 k8s-master03 主节点3、etc节点3
172.16.60.244  k8s-node01 工作节点1
172.16.60.245 k8s-node02 工作节点2
172.16.60.246 k8s-node03 工作节点3
172.16.60.247 k8s-ha01 nginx节点1、harbor节点1
172.16.60.248 k8s-ha02 nginx节点2、harbor节点2

本套Kubernetes集群环境版本
-  Kubernetes 1.14.2
-  Docker 18.09.6-ce
-  Etcd 3.3.13
-  Flanneld 0.11.0

插件:
-  Coredns
-  Dashboard
-  Metrics-server

镜像仓库:
-  harbor(两个仓库相互同步,对外提供统一入口VIP地址)

主要配置策略

kube-apiserver高可用(Nginx负载层):

  • 使用Nginx+Keepalived实现高可用, VIP1:172.16.60.250;
  • 关闭非安全端口 8080 和匿名访问;
  • 在安全端口 6443 接收 https 请求;
  • 严格的认证和授权策略 (x509、token、RBAC);
  • 开启 bootstrap token 认证,支持 kubelet TLS bootstrapping;
  • 使用 https 访问 kubelet、etcd,加密通信;

kube-controller-manager高可用:
-  3节点高可用;
-  关闭非安全端口,在安全端口 10252 接收 https 请求;
-  使用 kubeconfig 访问 apiserver 的安全端口;
-  自动 approve kubelet 证书签名请求 (CSR),证书过期后自动轮转;
-  各controller 使用自己的 ServiceAccount 访问 apiserver;

kube-scheduler高可用:
-  3节点高可用;
-  使用 kubeconfig 访问 apiserver 的安全端口;

kubelet:
-  使用 kubeadm 动态创建 bootstrap token,而不是在 apiserver 中静态配置;
-  使用TLS bootstrap机制自动生成 client 和 server 证书,过期后自动轮转;
-  在 kubeletConfiguration 类型的 JSON 文件配置主要参数;
-  关闭只读端口,在安全端口 10250 接收 https 请求,对请求进行认证和授权,拒绝匿名访问和非授权访问;
-  使用 kubeconfig 访问 apiserver 的安全端口;

kube-proxy:
-  使用kubeconfig 访问 apiserver 的安全端口;
-  在KubeProxyConfiguration 类型的 JSON 文件配置主要参数;
-  使用ipvs代理模式;

集群插件:
-  DNS:使用功能、性能更好的 coredns;
-  Dashboard:支持登录认证;
-  Metric:metrics-server,使用 https 访问 kubelet 安全端口;
-  Log:Elasticsearch、Fluend、Kibana;
-  Registry 镜像库:Harbor私有仓库,两个节点相互同步;

kubernetes集群部署中生成的证书文件如下:

ip地址 主机名
ca-key.pem                       根私钥
ca.pem                              根证书
kubernetes-key.pem           集群私钥
kubernetes.pem                  集群证书
kube-proxy.pem                 proxy私钥-node节点进行认证
kube-proxy-key.pem           proxy证书-node节点进行认证
admin.pem                         管理员私钥-主要用于kubectl认证
admin-key.pem                   管理员证书-主要用于kubectl认证

TLS作用:就是对通讯加密,防止中间人窃听;同时如果证书不信任的话根本就无法与 apiserver 建立连接,更不用提有没有权限向 apiserver 请求指定内容。
RBAC作用:RBAC 中规定了一个用户或者用户组(subject)具有请求哪些 api 的权限;在配合 TLS 加密的时候,实际上 apiserver 读取客户端证书的 CN 字段作为用户名,读取 O 字段作为用户组。

总之想要与apiserver通讯就必须采用由apiserver CA签发的证书,这样才能形成信任关系,建立TLS连接;另外可通过证书的CN、O字段来提供RBAC所需用户与用户组。

kubernetes集群会默认开启RABC(角色访问控制机制),这里提前了解几个重要概念:
DRBC
K8S 1.6引进,是让用户能够访问K8S API资源的授权方式(不授权就没有资格访问K8S的资源)
用户
K8S有两种用户:User 和 Service Account。其中,User给用户使用,Service Account给进程使用,让进程有相关权限。如Dashboard就是一个进程,可以创建一个Service Account给它使用。
角色
Role是一系列权限的集合,例如一个Role可包含读取和列出Pod的权限(ClusterRole和Role类似,其权限范围是整个集群)
角色绑定
RoleBinding把角色映射到用户,从而让这些用户拥有该角色的权限(ClusterRoleBinding和RoleBinding类似,可让用户拥有ClusteRole的权限)
Secret
Secret是一个包含少量敏感信息如密码,令牌或密钥的对象。把这些信息保存在Secret对象中,可以在这些信息被使用时加以控制,并可以减低信息泄露的风险。

二、环境初始化准备

Kubernetes集群部署过程均需要使用root账号操作,下面初始化操作在k8s的master和node节点上操作。

这里先以k8s-master01节点为例,其他节点类似操作。

1)主机名修改
[root@k8s-master01 ~]# hostnamectl set-hostname k8s-master01

如果DNS不支持解析主机名称,则需要修改/etc/hosts文件,添加主机名和IP的对应关系:
[root@k8s-master01 ~]# cat >> /etc/hosts <>/root/.bashrc
[root@k8s-master01 ~]# source /root/.bashrc

5) 安装依赖包
[root@k8s-master01 ~]# yum install -y epel-release
[root@k8s-master01 ~]# yum install -y conntrack ntpdate ntp ipvsadm ipset jq iptables curl sysstat libseccomp wget lsof telnet

关闭无关的服务
[root@k8s-master01 ~]# systemctl stop postfix && systemctl disable postfix

6)关闭防火墙
在每台机器上关闭防火墙,清理防火墙规则,设置默认转发策略:
[root@k8s-master01 ~]# systemctl stop firewalld
[root@k8s-master01 ~]# systemctl disable firewalld
[root@k8s-master01 ~]# iptables -F && iptables -X && iptables -F -t nat && iptables -X -t nat
[root@k8s-master01 ~]# iptables -P FORWARD ACCEPT
[root@k8s-master01 ~]# firewall-cmd --state
not running

7) 关闭SELinux
关闭SELinux,否则后续K8S挂载目录时可能报错 Permission denied:
[root@k8s-master01 ~]# setenforce 0
[root@k8s-master01 ~]# sed -i 's/^SELINUX=.*/SELINUX=disabled/' /etc/selinux/config

8) 关闭swap分区
如果开启了swap分区,kubelet会启动失败(可以通过将参数 --fail-swap-on 设置为false来忽略swap on),故需要在每个node节点机器上关闭swap分区。
这里索性将所有节点的swap分区都关闭,同时注释/etc/fstab中相应的条目,防止开机自动挂载swap分区:
[root@k8s-master01 ~]# swapoff -a
[root@k8s-master01 ~]# sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

9) 关闭dnsmasq
linux系统开启了dnsmasq后(如 GUI 环境),将系统DNS Server设置为 127.0.0.1,这会导致docker容器无法解析域名,需要关闭它 (centos7系统可能默认没有安装这个服务)
[root@k8s-node01 ~]# systemctl stop dnsmasq
[root@k8s-node01 ~]# systemctl disable dnsmasq

10)加载内核模块
[root@k8s-master01 ~]# modprobe ip_vs_rr
[root@k8s-master01 ~]# modprobe br_netfilter

11)优化内核参数
[root@k8s-master01 ~]# cat > kubernetes.conf < 可以记录到内存或文件系统;(默认记录到内存,对应的位置为 /run/log/jounal);
-> 可以限制占用的磁盘空间、保证磁盘剩余空间;
-> 可以限制日志文件大小、保存的时间;
-> journald 默认将日志转发给 rsyslog,这会导致日志写了多份,/var/log/messages 中包含了太多无关日志,不方便后续查看,同时也影响系统性能。

[root@k8s-master01 ~]# mkdir /var/log/journal           #持久化保存日志的目录
[root@k8s-master01 ~]# mkdir /etc/systemd/journald.conf.d
[root@k8s-master01 ~]# cat > /etc/systemd/journald.conf.d/99-prophet.conf < 高版本的 docker(1.13 以后) 启用了3.10 kernel实验支持的kernel memory account功能(无法关闭),当节点压力大如频繁启动和停止容器时会导致 cgroup memory leak;
-> 网络设备引用计数泄漏,会导致类似于报错:"kernel:unregister_netdevice: waiting for eth0 to become free. Usage count = 1";

解决方案如下:
-> 升级内核到 4.4.X 以上;
-> 或者,手动编译内核,disable CONFIG_MEMCG_KMEM 特性;
-> 或者安装修复了该问题的 Docker 18.09.1 及以上的版本。但由于 kubelet 也会设置 kmem(它 vendor 了 runc),所以需要重新编译 kubelet 并指定 GOFLAGS="-tags=nokmem";

这里升级内核方法:
[root@k8s-master01 ~]# uname  -r
3.10.0-862.el7.x86_64

[root@k8s-master01 ~]# rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-3.el7.elrepo.noarch.rpm

安装完成后检查 /boot/grub2/grub.cfg 中对应内核 menuentry 中是否包含 initrd16 配置,如果没有,再安装一次!
[root@k8s-master01 ~]# yum --enablerepo=elrepo-kernel install -y kernel-lt

设置开机从新内核启动
[root@k8s-master01 ~]# grub2-set-default 0

重启机器
[root@k8s-master01 ~]# init 6

安装内核源文件(在升级完内核并重启机器后执行,也可以不用执行这一步。可选):
[root@k8s-master01 ~]# yum --enablerepo=elrepo-kernel install kernel-lt-devel-$(uname -r) kernel-lt-headers-$(uname -r)

[root@k8s-master01 ~]# uname -r
4.4.180-2.el7.elrepo.x86_64

====================================================================================================================================
或者也可以采用下面升级内核的方法:
# git clone --branch v1.14.1 --single-branch --depth 1 https://github.com/kubernetes/kubernetes
# cd kubernetes
# KUBE_GIT_VERSION=v1.14.1 ./build/run.sh make kubelet GOFLAGS="-tags=nokmem"
# init 6
====================================================================================================================================

16) 关闭NUMA
[root@k8s-master01 ~]# cp /etc/default/grub{,.bak}
[root@k8s-master01 ~]# vim /etc/default/grub   
.........
GRUB_CMDLINE_LINUX="...... numa=off"      # 即添加"numa=0ff"内容

重新生成 grub2 配置文件:
# cp /boot/grub2/grub.cfg{,.bak}
# grub2-mkconfig -o /boot/grub2/grub.cfg

17) 变量脚本文件 (这一步很关键)
[root@k8s-master01 ~]# vim /opt/k8s/bin/environment.sh
#!/usr/bin/bash

# 生成 EncryptionConfig 所需的加密 key
export ENCRYPTION_KEY=$(head -c 32 /dev/urandom | base64)

# 集群中所有节点机器IP数组(master,node,etcd节点)
export NODE_ALL_IPS=(172.16.60.241 172.16.60.242 172.16.60.243 172.16.60.244 172.16.60.245 172.16.60.246)
# 集群中所有节点IP对应的主机名数组
export NODE_ALL_NAMES=(k8s-master01 k8s-master02 k8s-master03 k8s-node01 k8s-node02 k8s-node03)

# 集群中所有master节点集群IP数组
export NODE_MASTER_IPS=(172.16.60.241 172.16.60.242 172.16.60.243)
# 集群中master节点IP对应的主机名数组
export NODE_MASTER_NAMES=(k8s-master01 k8s-master02 k8s-master03)

# 集群中所有node节点集群IP数组
export NODE_NODE_IPS=(172.16.60.244 172.16.60.245 172.16.60.246)
# 集群中node节点IP对应的主机名数组
export NODE_NODE_NAMES=(k8s-node01 k8s-node02 k8s-node03)

# 集群中所有etcd节点集群IP数组
export NODE_ETCD_IPS=(172.16.60.241 172.16.60.242 172.16.60.243)
# 集群中etcd节点IP对应的主机名数组(这里是和master三节点机器共用)
export NODE_ETCD_NAMES=(k8s-etcd01 k8s-etcd02 k8s-etcd03)

# etcd 集群服务地址列表
export ETCD_ENDPOINTS="https://172.16.60.241:2379,https://172.16.60.242:2379,https://172.16.60.243:2379"

# etcd 集群间通信的 IP 和端口
export ETCD_NODES="k8s-etcd01=https://172.16.60.241:2380,k8s-etcd02=https://172.16.60.242:2380,k8s-etcd03=https://172.16.60.243:2380"

# kube-apiserver 的反向代理(地址端口.这里也就是nginx代理层的VIP地址
export KUBE_APISERVER="https://172.16.60.250:8443"

# 节点间互联网络接口名称. 这里我所有的centos7节点机的网卡设备是ens192,而不是eth0
export IFACE="ens192"

# etcd 数据目录
export ETCD_DATA_DIR="/data/k8s/etcd/data"

# etcd WAL 目录,建议是 SSD 磁盘分区,或者和 ETCD_DATA_DIR 不同的磁盘分区
export ETCD_WAL_DIR="/data/k8s/etcd/wal"

# k8s 各组件数据目录
export K8S_DIR="/data/k8s/k8s"

# docker 数据目录
export DOCKER_DIR="/data/k8s/docker"

## 以下参数一般不需要修改

# TLS Bootstrapping 使用的 Token,可以使用命令 head -c 16 /dev/urandom | od -An -t x | tr -d ' ' 生成
BOOTSTRAP_TOKEN="41f7e4ba8b7be874fcff18bf5cf41a7c"

# 最好使用 当前未用的网段 来定义服务网段和 Pod 网段

# 服务网段,部署前路由不可达,部署后集群内路由可达(kube-proxy 保证)
SERVICE_CIDR="10.254.0.0/16"

# Pod 网段,建议 /16 段地址,部署前路由不可达,部署后集群内路由可达(flanneld 保证)
CLUSTER_CIDR="172.30.0.0/16"

# 服务端口范围 (NodePort Range)
export NODE_PORT_RANGE="30000-32767"

# flanneld 网络配置前缀
export FLANNEL_ETCD_PREFIX="/kubernetes/network"

# kubernetes 服务 IP (一般是 SERVICE_CIDR 中第一个IP)
export CLUSTER_KUBERNETES_SVC_IP="10.254.0.1"

# 集群 DNS 服务 IP (从 SERVICE_CIDR 中预分配)
export CLUSTER_DNS_SVC_IP="10.254.0.2"

# 集群 DNS 域名(末尾不带点号)
export CLUSTER_DNS_DOMAIN="cluster.local"

# 将二进制目录 /opt/k8s/bin 加到 PATH 中
export PATH=/opt/k8s/bin:$PATH

三、创建集群中需要的CA证书和秘钥

为确保安全,kubernetes 系统各组件需要使用 x509 证书对通信进行加密和认证。CA (Certificate Authority) 是自签名的根证书,用来签名后续创建的其它证书。这里使用 CloudFlare 的 PKI 工具集 cfssl 创建所有证书。下面部署命令均在k8s-master01节点上执行,然后远程分发文件和执行命令。

1)安装cfssl工具集
[root@k8s-master01 ~]# mkdir -p /opt/k8s/cert && cd /opt/k8s
[root@k8s-master01 k8s]# wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
[root@k8s-master01 k8s]# mv cfssl_linux-amd64 /opt/k8s/bin/cfssl

[root@k8s-master01 k8s]# wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
[root@k8s-master01 k8s]# mv cfssljson_linux-amd64 /opt/k8s/bin/cfssljson

[root@k8s-master01 k8s]# wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
[root@k8s-master01 k8s]# mv cfssl-certinfo_linux-amd64 /opt/k8s/bin/cfssl-certinfo

[root@k8s-master01 k8s]# chmod +x /opt/k8s/bin/*
[root@k8s-master01 k8s]# export PATH=/opt/k8s/bin:$PATH

2)创建根证书 (CA)
CA 证书是集群所有节点共享的,只需要创建一个 CA 证书,后续创建的所有证书都由它签名。
2.1)创建配置文件
CA 配置文件用于配置根证书的使用场景 (profile) 和具体参数 (usage,过期时间、服务端认证、客户端认证、加密等),后续在签名其它证书时需要指定特定场景。
[root@k8s-master01 k8s]# cd /opt/k8s/work
[root@k8s-master01 work]# cat > ca-config.json < ca-csr.json <>> ${node_all_ip}"
    ssh root@${node_all_ip} "mkdir -p /etc/kubernetes/cert"
    scp ca*.pem ca-config.json root@${node_all_ip}:/etc/kubernetes/cert
  done

四、部署kubectl命令行工具

kubectl 是 kubernetes 集群的命令行管理工具. kubectl 默认从 ~/.kube/config 文件读取kube-apiserver地址和认证信息,如果没有配置,执行kubectl命令时就会报错!kubectl只需要部署一次,生成的kubeconfig文件是通用的,可以拷贝到需要执行kubectl命令的节点机器,重命名为 ~/.kube/config;这里我将kubectl节点只部署到三个master节点机器上,其他节点不部署kubectl命令。也就是说后续进行kubectl命令管理就只能在master节点上操作。下面部署命令均在k8s-master01节点上执行,然后远程分发文件和执行命令。

如果没有部署kubectl工具,则执行时会报错说没有该命令:
[root@k8s-master01 ~]# kubectl get pods
-bash: kubectl: command not found

1)下载和分发kubectl二进制文件
二进制包下载地址:https://pan.baidu.com/s/1HUWFqKVLyxIzoX2LDQSEBg
提取密码:7kaf
[root@k8s-master01 ~]# cd /opt/k8s/work
[root@k8s-master01 work]# wget https://dl.k8s.io/v1.14.2/kubernetes-client-linux-amd64.tar.gz
[root@k8s-master01 work]# tar -xzvf kubernetes-client-linux-amd64.tar.gz

分发到所有使用kubectl的节点,这里只分发到三个master节点
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_master_ip in ${NODE_MASTER_IPS[@]}
do
  echo ">>> ${node_master_ip}"
  scp kubernetes/client/bin/kubectl root@${node_master_ip}:/opt/k8s/bin/
  ssh root@${node_master_ip} "chmod +x /opt/k8s/bin/*"
done

2) 创建admin证书和私钥
kubectl与apiserver https安全端口通信,apiserver 对提供的证书进行认证和授权。
kubectl作为集群的管理工具,需要被授予最高权限,这里创建具有最高权限的 admin 证书。
创建证书签名请求:
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# cat > admin-csr.json <>> ${node_master_ip}"
  ssh root@${node_master_ip} "mkdir -p ~/.kube"
  scp kubectl.kubeconfig root@${node_master_ip}:~/.kube/config
done

五、部署etcd集群

etcd是基于Raft的分布式key-value存储系统,由CoreOS开发,常用于服务发现、共享配置以及并发控制(如leader选举、分布式锁等)。kubernetes使用etcd存储所有运行数据。需要注意的是:由于etcd是负责存储,所以不建议搭建单点集群,如zookeeper一样,由于存在选举策略,所以一般推荐奇数个集群,如3,5,7。只要集群半数以上的结点存活,那么集群就可以正常运行,否则集群可能无法正常使用。下面部署命令均在k8s-master01节点上执行,然后远程分发文件和执行命令。

1)下载和分发etcd二进制文件
[root@k8s-master01 ~]# cd /opt/k8s/work
[root@k8s-master01 work]# wget https://github.com/coreos/etcd/releases/download/v3.3.13/etcd-v3.3.13-linux-amd64.tar.gz
[root@k8s-master01 work]# tar -xvf etcd-v3.3.13-linux-amd64.tar.gz

分发二进制文件到etcd集群所有节点:
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_etcd_ip in ${NODE_ETCD_IPS[@]}
  do
    echo ">>> ${node_etcd_ip}"
    scp etcd-v3.3.13-linux-amd64/etcd* root@${node_etcd_ip}:/opt/k8s/bin
    ssh root@${node_etcd_ip} "chmod +x /opt/k8s/bin/*"
  done

2) 创建etcd证书和私钥
创建证书签名请求:
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# cat > etcd-csr.json <>> ${node_etcd_ip}"
    ssh root@${node_etcd_ip} "mkdir -p /etc/etcd/cert"
    scp etcd*.pem root@${node_etcd_ip}:/etc/etcd/cert/
  done

3) 创建etcd的systemd unit模板文件
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# cat > etcd.service.template < etcd-${NODE_ETCD_IPS[i]}.service
  done

[root@k8s-master01 work]# ls *.service                
etcd-172.16.60.241.service  etcd-172.16.60.242.service  etcd-172.16.60.243.service

最好手动查看其中一个etcd节点的启动文件里的--name名称和ip是否都已修改过来了
[root@k8s-master01 work]# cat etcd-172.16.60.241.service
.......
--name=k8s-etcd01 \
.......
  --listen-peer-urls=https://172.16.60.241:2380 \
  --initial-advertise-peer-urls=https://172.16.60.241:2380 \
  --listen-client-urls=https://172.16.60.241:2379,http://127.0.0.1:2379 \
  --advertise-client-urls=https://172.16.60.241:2379 \
  --initial-cluster-token=etcd-cluster-0 \
  --initial-cluster=k8s-etcd01=https://172.16.60.241:2380,k8s-etcd02=https://172.16.60.242:2380,k8s-etcd03=https://172.16.60.243:2380 \
.......

配置说明:
NODE_ETCD_NAMES 和 NODE_ETCD_IPS 为相同长度的bash数组,分别为etcd集群节点名称和对应的IP;

分发生成的 systemd unit 文件:
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_etcd_ip in ${NODE_ETCD_IPS[@]}
  do
    echo ">>> ${node_etcd_ip}"
    scp etcd-${node_etcd_ip}.service root@${node_etcd_ip}:/etc/systemd/system/etcd.service
  done

配置说明: 文件重命名为 etcd.service;

5)启动 etcd 服务
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_etcd_ip in ${NODE_ETCD_IPS[@]}
  do
    echo ">>> ${node_etcd_ip}"
    ssh root@${node_etcd_ip} "mkdir -p ${ETCD_DATA_DIR} ${ETCD_WAL_DIR}"
    ssh root@${node_etcd_ip} "systemctl daemon-reload && systemctl enable etcd && systemctl restart etcd " &
  done

配置说明:
必须先创建 etcd 数据目录和工作目录;
etcd 进程首次启动时会等待其它节点的 etcd 加入集群,命令 systemctl start etcd 会卡住一段时间,为正常现象;

6)检查etcd服务启动结果
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_etcd_ip in ${NODE_ETCD_IPS[@]}
  do
    echo ">>> ${node_etcd_ip}"
    ssh root@${node_etcd_ip} "systemctl status etcd|grep Active"
  done

预期输出结果为:
>>> 172.16.60.241
   Active: active (running) since Tue 2019-06-04 19:55:32 CST; 7min ago
>>> 172.16.60.242
   Active: active (running) since Tue 2019-06-04 19:55:32 CST; 7min ago
>>> 172.16.60.243
   Active: active (running) since Tue 2019-06-04 19:55:32 CST; 7min ago

确保状态均为为active (running),否则查看日志,确认原因 (可以执行"journalctl -u etcd"命令查看启动失败原因)

6)验证服务状态
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_etcd_ip in ${NODE_ETCD_IPS[@]}
  do
    echo ">>> ${node_etcd_ip}"
    ssh root@${node_etcd_ip} "
    ETCDCTL_API=3 /opt/k8s/bin/etcdctl \
    --endpoints=https://${node_etcd_ip}:2379 \
    --cacert=/etc/kubernetes/cert/ca.pem \
    --cert=/etc/etcd/cert/etcd.pem \
    --key=/etc/etcd/cert/etcd-key.pem endpoint health "
  done

预期输出结果为:
https://172.16.60.241:2379 is healthy: successfully committed proposal: took = 2.44394ms
>>> 172.16.60.242
https://172.16.60.242:2379 is healthy: successfully committed proposal: took = 7.044349ms
>>> 172.16.60.243
https://172.16.60.243:2379 is healthy: successfully committed proposal: took = 1.865713ms

输出均为 healthy 时表示集群服务正常。

7)查看当前etcd集群中的leader
在三台etcd节点中的任意一个节点机器上执行下面命令:
[root@k8s-etcd03 ~]# source /opt/k8s/bin/environment.sh
[root@k8s-etcd03 ~]# ETCDCTL_API=3 /opt/k8s/bin/etcdctl \
  -w table --cacert=/etc/kubernetes/cert/ca.pem \
  --cert=/etc/etcd/cert/etcd.pem \
  --key=/etc/etcd/cert/etcd-key.pem \
  --endpoints=${ETCD_ENDPOINTS} endpoint status

预期输出结果为:
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
|          ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| https://172.16.60.241:2379 | 577381f5de0f4495 |  3.3.13 |   16 kB |     false |         2 |          8 |
| https://172.16.60.242:2379 | bf4ce221cdf39fb0 |  3.3.13 |   16 kB |     false |         2 |          8 |
| https://172.16.60.243:2379 |  3bc2e49bc639590 |  3.3.13 |   16 kB |      true |         2 |          8 |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

由上面结果可见,当前的leader节点为172.16.60.243

六、Flannel容器网络方案部署

kubernetes要求集群内各节点(这里指master和node节点)能通过Pod网段互联互通。flannel使用vxlan技术为各节点创建一个可以互通的Pod网络,使用的端口为UDP 8472(需要开放该端口,如公有云AWS等)。flanneld第一次启动时,从etcd获取配置的Pod网段信息,为本节点分配一个未使用的地址段,然后创建flannedl.1网络接口(也可能是其它名称,如flannel1等)。flannel将分配给自己的Pod网段信息写入/run/flannel/docker文件,docker后续使用这个文件中的环境变量设置docker0网桥,从而从这个地址段为本节点的所有Pod容器分配IP。下面部署命令均在k8s-master01节点上执行,然后远程分发文件和执行命令。

1) 下载和分发 flanneld 二进制文件
从flannel的release页面(https://github.com/coreos/flannel/releases)下载最新版本的安装包:
[root@k8s-master01 ~]# cd /opt/k8s/work
[root@k8s-master01 work]# mkdir flannel
[root@k8s-master01 work]# wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz
[root@k8s-master01 work]# tar -zvxf flannel-v0.11.0-linux-amd64.tar.gz -C flannel

分发二进制文件到集群所有节点:
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_all_ip in ${NODE_ALL_IPS[@]}
  do
    echo ">>> ${node_all_ip}"
    scp flannel/{flanneld,mk-docker-opts.sh} root@${node_all_ip}:/opt/k8s/bin/
    ssh root@${node_all_ip} "chmod +x /opt/k8s/bin/*"
  done

2) 创建 flannel 证书和私钥
flanneld 从 etcd 集群存取网段分配信息,而 etcd 集群启用了双向 x509 证书认证,所以需要为 flanneld 生成证书和私钥。
创建证书签名请求:
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# cat > flanneld-csr.json <>> ${node_all_ip}"
    ssh root@${node_all_ip} "mkdir -p /etc/flanneld/cert"
    scp flanneld*.pem root@${node_all_ip}:/etc/flanneld/cert
  done

3)向 etcd 写入集群 Pod 网段信息 (注意:本步骤只需执行一次)
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/opt/k8s/work/ca.pem \
  --cert-file=/opt/k8s/work/flanneld.pem \
  --key-file=/opt/k8s/work/flanneld-key.pem \
  mk ${FLANNEL_ETCD_PREFIX}/config '{"Network":"'${CLUSTER_CIDR}'", "SubnetLen": 21, "Backend": {"Type": "vxlan"}}'

解决说明:
flanneld 当前版本 (v0.11.0) 不支持 etcd v3,故使用 etcd v2 API 写入配置 key 和网段数据;
写入的 Pod 网段 ${CLUSTER_CIDR} 地址段(如 /16)必须小于 SubnetLen,必须与 kube-controller-manager 的 --cluster-cidr 参数值一致;

4)创建 flanneld 的 systemd unit 文件
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# cat > flanneld.service << EOF
[Unit]
Description=Flanneld overlay address etcd agent
After=network.target
After=network-online.target
Wants=network-online.target
After=etcd.service
Before=docker.service

[Service]
Type=notify
ExecStart=/opt/k8s/bin/flanneld \\
  -etcd-cafile=/etc/kubernetes/cert/ca.pem \\
  -etcd-certfile=/etc/flanneld/cert/flanneld.pem \\
  -etcd-keyfile=/etc/flanneld/cert/flanneld-key.pem \\
  -etcd-endpoints=${ETCD_ENDPOINTS} \\
  -etcd-prefix=${FLANNEL_ETCD_PREFIX} \\
  -iface=${IFACE} \\
  -ip-masq
ExecStartPost=/opt/k8s/bin/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker
Restart=always
RestartSec=5
StartLimitInterval=0

[Install]
WantedBy=multi-user.target
RequiredBy=docker.service
EOF

解决说明:
mk-docker-opts.sh 脚本将分配给 flanneld 的 Pod 子网段信息写入 /run/flannel/docker 文件,后续 docker 启动时使用这个文件中的环境变量配置 docker0 网桥;
flanneld 使用系统缺省路由所在的接口与其它节点通信,对于有多个网络接口(如内网和公网)的节点,可以用 -iface 参数指定通信接口;
flanneld 运行时需要 root 权限;
-ip-masq: flanneld 为访问 Pod 网络外的流量设置 SNAT 规则,同时将传递给 Docker 的变量 --ip-masq(/run/flannel/docker 文件中)设置为 false,这样 Docker 将不再创建 SNAT 规则; Docker 的 --ip-masq 为 true 时,创建的 SNAT 规则比较“暴力”:将所有本节点 Pod 发起的、访问非 docker0 接口的请求做 SNAT,这样访问其他节点 Pod 的请求来源 IP 会被设置为 flannel.1 接口的 IP,导致目的 Pod 看不到真实的来源 Pod IP。 flanneld 创建的 SNAT 规则比较温和,只对访问非 Pod 网段的请求做 SNAT。

5)分发 flanneld systemd unit 文件到所有节点
[root@k8s-master01 work]# cd /opt/k8s/work
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_all_ip in ${NODE_ALL_IPS[@]}
  do
    echo ">>> ${node_all_ip}"
    scp flanneld.service root@${node_all_ip}:/etc/systemd/system/
  done

6)启动 flanneld 服务
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_all_ip in ${NODE_ALL_IPS[@]}
  do
    echo ">>> ${node_all_ip}"
    ssh root@${node_all_ip} "systemctl daemon-reload && systemctl enable flanneld && systemctl restart flanneld"
  done

6)检查启动结果
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_all_ip in ${NODE_ALL_IPS[@]}
  do
    echo ">>> ${node_all_ip}"
    ssh root@${node_all_ip} "systemctl status flanneld|grep Active"
  done

确保状态为 active (running),否则查看日志,确认原因"journalctl -u flanneld"

7) 检查分配给各 flanneld 的 Pod 网段信息
查看集群 Pod 网段(/16):
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/etc/kubernetes/cert/ca.pem \
  --cert-file=/etc/flanneld/cert/flanneld.pem \
  --key-file=/etc/flanneld/cert/flanneld-key.pem \
  get ${FLANNEL_ETCD_PREFIX}/config

预期输出: {"Network":"172.30.0.0/16", "SubnetLen": 21, "Backend": {"Type": "vxlan"}}

查看已分配的 Pod 子网段列表(/24):
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/etc/kubernetes/cert/ca.pem \
  --cert-file=/etc/flanneld/cert/flanneld.pem \
  --key-file=/etc/flanneld/cert/flanneld-key.pem \
  ls ${FLANNEL_ETCD_PREFIX}/subnets

预期输出:
/kubernetes/network/subnets/172.30.40.0-21
/kubernetes/network/subnets/172.30.88.0-21
/kubernetes/network/subnets/172.30.56.0-21
/kubernetes/network/subnets/172.30.72.0-21
/kubernetes/network/subnets/172.30.232.0-21
/kubernetes/network/subnets/172.30.152.0-21

查看某一 Pod 网段对应的节点 IP 和 flannel 接口地址:
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/etc/kubernetes/cert/ca.pem \
  --cert-file=/etc/flanneld/cert/flanneld.pem \
  --key-file=/etc/flanneld/cert/flanneld-key.pem \
  get ${FLANNEL_ETCD_PREFIX}/subnets/172.30.40.0-21

预期输出:{"PublicIP":"172.16.60.243","BackendType":"vxlan","BackendData":{"VtepMAC":"f2:de:47:06:4b:d3"}}

解决说明:
172.30.40.0/21 被分配给节点k8s-master03(172.16.60.243);
VtepMAC 为k8s-master03节点的 flannel.1 网卡 MAC 地址;

8)检查节点 flannel 网络信息 (比如k8s-master01节点)
[root@k8s-master01 work]# ip addr show
1: lo:  mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
2: ens192:  mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:ac:7c:81 brd ff:ff:ff:ff:ff:ff
    inet 172.16.60.241/24 brd 172.16.60.255 scope global ens192
       valid_lft forever preferred_lft forever
3: flannel.1:  mtu 1450 qdisc noqueue state UNKNOWN group default
    link/ether 7a:2a:36:99:75:5f brd ff:ff:ff:ff:ff:ff
    inet 172.30.232.0/32 scope global flannel.1
       valid_lft forever preferred_lft forever

注意: flannel.1 网卡的地址为分配的 Pod 子网段的第一个 IP(.0),且是 /32 的地址;

[root@k8s-master01 work]# ip route show |grep flannel.1
172.30.40.0/21 via 172.30.40.0 dev flannel.1 onlink
172.30.56.0/21 via 172.30.56.0 dev flannel.1 onlink
172.30.72.0/21 via 172.30.72.0 dev flannel.1 onlink
172.30.88.0/21 via 172.30.88.0 dev flannel.1 onlink
172.30.152.0/21 via 172.30.152.0 dev flannel.1 onlink

到其它节点 Pod 网段请求都被转发到 flannel.1 网卡;
flanneld 根据 etcd 中子网段的信息,如 ${FLANNEL_ETCD_PREFIX}/subnets/172.30.232.0-21 ,来决定进请求发送给哪个节点的互联 IP;

9)验证各节点能通过 Pod 网段互通
在各节点上部署 flannel 后,检查是否创建了 flannel 接口(名称可能为 flannel0、flannel.0、flannel.1 等):
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_all_ip in ${NODE_ALL_IPS[@]}
  do
    echo ">>> ${node_all_ip}"
    ssh ${node_all_ip} "/usr/sbin/ip addr show flannel.1|grep -w inet"
  done

预期输出:
>>> 172.16.60.241
    inet 172.30.232.0/32 scope global flannel.1
>>> 172.16.60.242
    inet 172.30.152.0/32 scope global flannel.1
>>> 172.16.60.243
    inet 172.30.40.0/32 scope global flannel.1
>>> 172.16.60.244
    inet 172.30.88.0/32 scope global flannel.1
>>> 172.16.60.245
    inet 172.30.56.0/32 scope global flannel.1
>>> 172.16.60.246
    inet 172.30.72.0/32 scope global flannel.1

在各节点上 ping 所有 flannel 接口 IP,确保能通:
[root@k8s-master01 work]# source /opt/k8s/bin/environment.sh
[root@k8s-master01 work]# for node_all_ip in ${NODE_ALL_IPS[@]}
  do
    echo ">>> ${node_all_ip}"
    ssh ${node_all_ip} "ping -c 1 172.30.232.0"
    ssh ${node_all_ip} "ping -c 1 172.30.152.0"
    ssh ${node_all_ip} "ping -c 1 172.30.40.0"
    ssh ${node_all_ip} "ping -c 1 172.30.88.0"
    ssh ${node_all_ip} "ping -c 1 172.30.56.0"
    ssh ${node_all_ip} "ping -c 1 172.30.72.0"
  done

七、基于nginx 四层代理环境

这里采用nginx 4 层透明代理功能实现 K8S 节点( master 节点和 worker 节点)高可用访问 kube-apiserver。控制节点的 kube-controller-manager、kube-scheduler 是多实例(3个)部署,所以只要有一个实例正常,就可以保证高可用;搭建nginx+keepalived环境,对外提供一个统一的vip地址,后端对接多个 apiserver 实例,nginx 对它们做健康检查和负载均衡;kubelet、kube-proxy、controller-manager、scheduler 通过vip地址访问 kube-apiserver,从而实现 kube-apiserver 的高可用;

一、安装和配置nginx,下面操作在172.16.60.247、172.16.60.247两个节点机器上操作

1)下载和编译 nginx
[root@k8s-ha01 ~]# yum -y install gcc pcre-devel zlib-devel openssl-devel wget lsof
[root@k8s-ha01 ~]# cd /opt/k8s/work
[root@k8s-ha01 work]# wget http://nginx.org/download/nginx-1.15.3.tar.gz
[root@k8s-ha01 work]# tar -xzvf nginx-1.15.3.tar.gz
[root@k8s-ha01 work]# cd nginx-1.15.3
[root@k8s-ha01 nginx-1.15.3]# mkdir nginx-prefix
[root@k8s-ha01 nginx-1.15.3]# ./configure --with-stream --without-http --prefix=$(pwd)/nginx-prefix --without-http_uwsgi_module --without-http_scgi_module --without-http_fastcgi_module

解决说明:
--with-stream:开启 4 层透明转发(TCP Proxy)功能;
--without-xxx:关闭所有其他功能,这样生成的动态链接二进制程序依赖最小;

预期输出:
Configuration summary
  + PCRE library is not used
  + OpenSSL library is not used
  + zlib library is not used

  nginx path prefix: "/root/tmp/nginx-1.15.3/nginx-prefix"
  nginx binary file: "/root/tmp/nginx-1.15.3/nginx-prefix/sbin/nginx"
  nginx modules path: "/root/tmp/nginx-1.15.3/nginx-prefix/modules"
  nginx configuration prefix: "/root/tmp/nginx-1.15.3/nginx-prefix/conf"
  nginx configuration file: "/root/tmp/nginx-1.15.3/nginx-prefix/conf/nginx.conf"
  nginx pid file: "/root/tmp/nginx-1.15.3/nginx-prefix/logs/nginx.pid"
  nginx error log file: "/root/tmp/nginx-1.15.3/nginx-prefix/logs/error.log"
  nginx http access log file: "/root/tmp/nginx-1.15.3/nginx-prefix/logs/access.log"
  nginx http client request body temporary files: "client_body_temp"
  nginx http proxy temporary files: "proxy_temp"

继续编译和安装:
[root@k8s-ha01 nginx-1.15.3]# make && make install

2)验证编译的 nginx
[root@k8s-ha01 nginx-1.15.3]# ./nginx-prefix/sbin/nginx -v
nginx version: nginx/1.15.3

查看 nginx 动态链接的库:
[root@k8s-ha01 nginx-1.15.3]# ldd ./nginx-prefix/sbin/nginx
        linux-vdso.so.1 =>  (0x00007ffc7e0ef000)
        libdl.so.2 => /lib64/libdl.so.2 (0x00007f00b5c2d000)
        libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f00b5a11000)
        libc.so.6 => /lib64/libc.so.6 (0x00007f00b5644000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f00b5e31000)

由于只开启了 4 层透明转发功能,所以除了依赖 libc 等操作系统核心 lib 库外,没有对其它 lib 的依赖(如 libz、libssl 等),这样可以方便部署到各版本操作系统中;

3)安装和部署 nginx
[root@k8s-ha01 ~]# cp /opt/k8s/work/nginx-1.15.3/nginx-prefix/sbin/nginx /opt/k8s/kube-nginx/sbin/kube-nginx
[root@k8s-ha01 ~]# chmod a+x /opt/k8s/kube-nginx/sbin/*
[root@k8s-ha01 ~]# mkdir -p /opt/k8s/kube-nginx/{conf,logs,sbin}

配置 nginx,开启 4 层透明转发功能:
[root@k8s-ha01 ~]# vim /opt/k8s/kube-nginx/conf/kube-nginx.conf
worker_processes 2;

events {
    worker_connections  65525;
}

stream {
    upstream backend {
        hash $remote_addr consistent;
        server 172.16.60.241:6443        max_fails=3 fail_timeout=30s;
        server 172.16.60.242:6443        max_fails=3 fail_timeout=30s;
        server 172.16.60.243:6443        max_fails=3 fail_timeout=30s;
    }

    server {
        listen 8443;
        proxy_connect_timeout 1s;
        proxy_pass backend;
    }
}

[root@k8s-ha01 ~]# ulimit -n 65525
[root@k8s-ha01 ~]# vim /etc/security/limits.conf     # 文件底部添加下面四行内容
* soft nofile 65525
* hard nofile 65525
* soft nproc 65525
* hard nproc 65525

4) 配置 systemd unit 文件,启动服务
[root@k8s-ha01 ~]# vim /etc/systemd/system/kube-nginx.service
[Unit]
Description=kube-apiserver nginx proxy
After=network.target
After=network-online.target
Wants=network-online.target

[Service]
Type=forking
ExecStartPre=/opt/k8s/kube-nginx/sbin/kube-nginx -c /opt/k8s/kube-nginx/conf/kube-nginx.conf -p /opt/k8s/kube-nginx -t
ExecStart=/opt/k8s/kube-nginx/sbin/kube-nginx -c /opt/k8s/kube-nginx/conf/kube-nginx.conf -p /opt/k8s/kube-nginx
ExecReload=/opt/k8s/kube-nginx/sbin/kube-nginx -c /opt/k8s/kube-nginx/conf/kube-nginx.conf -p /opt/k8s/kube-nginx -s reload
PrivateTmp=true
Restart=always
RestartSec=5
StartLimitInterval=0
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target

[root@k8s-ha01 ~]# systemctl daemon-reload && systemctl enable kube-nginx && systemctl restart kube-nginx
[root@k8s-ha01 ~]# lsof -i:8443
COMMAND     PID   USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
kube-ngin 31980   root    5u  IPv4 145789      0t0  TCP localhost:pcsync-https (LISTEN)
kube-ngin 31981 nobody    5u  IPv4 145789      0t0  TCP localhost:pcsync-https (LISTEN)
kube-ngin 31982 nobody    5u  IPv4 145789      0t0  TCP localhost:pcsync-https (LISTEN)

测试下8443代理端口连通性
[root@k8s-ha01 ~]# telnet 172.16.60.250 8443
Trying 172.16.60.250...
Connected to 172.16.60.250.
Escape character is '^]'.
Connection closed by foreign host.

这是因为三个kube-apiserver服务还没有部署,即后端三个apiserver实例的6443端口还没有起来。

二、安装和配置keepalived
1)编译安装keepalived (两个节点上同样操作)
[root@k8s-ha01 ~]# cd /opt/k8s/work/
[root@k8s-ha01 work]# wget https://www.keepalived.org/software/keepalived-2.0.16.tar.gz
[root@k8s-ha01 work]# tar -zvxf keepalived-2.0.16.tar.gz
[root@k8s-ha01 work]# cd keepalived-2.0.16
[root@k8s-ha01 keepalived-2.0.16]# ./configure
[root@k8s-ha01 keepalived-2.0.16]# make && make install

[root@k8s-ha01 keepalived-2.0.16]# cp keepalived/etc/init.d/keepalived /etc/rc.d/init.d/
[root@k8s-ha01 keepalived-2.0.16]# cp /usr/local/etc/sysconfig/keepalived /etc/sysconfig/
[root@k8s-ha01 keepalived-2.0.16]# mkdir /etc/keepalived
[root@k8s-ha01 keepalived-2.0.16]# cp /usr/local/etc/keepalived/keepalived.conf /etc/keepalived/
[root@k8s-ha01 keepalived-2.0.16]# cp /usr/local/sbin/keepalived /usr/sbin/
[root@k8s-ha01 keepalived-2.0.16]# echo "/etc/init.d/keepalived start" >> /etc/rc.local

2) 配置keepalived
172.16.60.207节点上的keepalived配置内容
[root@k8s-ha01 ~]# cp /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.bak
[root@k8s-ha01 ~]# >/etc/keepalived/keepalived.conf
[root@k8s-ha01 ~]# vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived    

global_defs {
notification_email {    
[email protected] 
[email protected]
}

notification_email_from [email protected] 
smtp_server 127.0.0.1     
smtp_connect_timeout 30   
router_id master-node    
}

vrrp_script chk_http_port {     
    script "/opt/chk_nginx.sh" 
    interval 2                  
    weight -5                  
    fall 2              
    rise 1                 
}

vrrp_instance VI_1 {   
    state MASTER   
    interface ens192     
    mcast_src_ip 172.16.60.247
    virtual_router_id 51        
    priority 101               
    advert_int 1                
    authentication {           
        auth_type PASS         
        auth_pass 1111         
    }
    virtual_ipaddress {       
        172.16.60.250
    }

track_script {                     
   chk_http_port                   
}
}

另一个节点172.16.60.248上的keepalived配置内容为:
[root@k8s-ha02 ~]# cp /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.bak
[root@k8s-ha02 ~]# >/etc/keepalived/keepalived.conf
[root@k8s-ha02 ~]# vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived    

global_defs {
notification_email {    
[email protected] 
[email protected]
}

notification_email_from [email protected] 
smtp_server 127.0.0.1     
smtp_connect_timeout 30   
router_id slave-node    
}

vrrp_script chk_http_port {     
    script "/opt/chk_nginx.sh" 
    interval 2                  
    weight -5                  
    fall 2              
    rise 1                 
}

vrrp_instance VI_1 {   
    state MASTER   
    interface ens192     
    mcast_src_ip 172.16.60.248
    virtual_router_id 51        
    priority 99              
    advert_int 1                
    authentication {           
        auth_type PASS         
        auth_pass 1111         
    }
    virtual_ipaddress {       
        172.16.60.250
    }

track_script {                     
   chk_http_port                   
}
}

2) 配置两个节点的nginx监控脚本(该脚本会在keepalived.conf配置中被引用)
[root@k8s-ha01 ~]# vim /opt/chk_nginx.sh
#!/bin/bash
counter=$(ps -ef|grep -w kube-nginx|grep -v grep|wc -l)
if [ "${counter}" = "0" ]; then
    systemctl start kube-nginx
    sleep 2
    counter=$(ps -ef|grep kube-nginx|grep -v grep|wc -l)
    if [ "${counter}" = "0" ]; then
        /etc/init.d/keepalived stop
    fi
fi

[root@k8s-ha01 ~]# chmod 755 /opt/chk_nginx.sh

3) 启动两个节点的keepalived服务
[root@k8s-ha01 ~]# /etc/init.d/keepalived start
Starting keepalived (via systemctl):                       [  OK  ]

[root@k8s-ha01 ~]# ps -ef|grep keepalived
root      5358     1  0 00:32 ?        00:00:00 /usr/local/sbin/keepalived -D
root      5359  5358  0 00:32 ?        00:00:00 /usr/local/sbin/keepalived -D
root      5391 29606  0 00:32 pts/0    00:00:00 grep --color=auto keepalived

查看vip情况. 发现vip默认起初会在master节点上
[root@k8s-ha01 ~]# ip addr
1: lo:  mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: ens192:  mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:ac:3a:a6 brd ff:ff:ff:ff:ff:ff
    inet 172.16.60.247/24 brd 172.16.60.255 scope global ens192
       valid_lft forever preferred_lft forever
    inet 172.16.60.250/32 scope global ens192
       valid_lft forever preferred_lft forever
    inet6 fe80::250:56ff:feac:3aa6/64 scope link
       valid_lft forever preferred_lft forever

4) 测试vip故障转移
参考:https://www.cnblogs.com/kevingrace/p/6138185.html

当master节点的keepalived服务挂掉,vip会自动漂移到slave节点上
当master节点的keepliaved服务恢复后,从将vip资源从slave节点重新抢占回来(keepalived配置文件中的priority优先级决定的)
当两个节点的nginx挂掉后,keepaived会引用nginx监控脚本自启动nginx服务,如启动失败,则强杀keepalived服务,从而实现vip转移。

作者:散尽浮华
原文链接:http://1t.click/aRcN