pandas学习

最近一段时间特别迷茫,不知道学习的方向,也好花点时间给大家讲一下pandas这个python数据分析吧。

import pandas as pd
import numpy as np
s = pd.Series([1,3,5,np.nan,6,8])
s
s.index
Out[5]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Int64Index([0,1,2,3,4,5],dtype=int64)

Series是pandas里面重要的一个包,相信大家也看出来了他是干嘛的。


pandas学习_第1张图片

其实你会发现和数据库的表结构很相似。

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates
Out[7]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [9]: df
Out[9]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

我们这里看到dataframe的作用,columns,index还有填充的数据内容。

>>> import pandas as pd 
>>> from pandas import Series, DataFrame 

>>> data = {"name":["yahoo","google","facebook"], "marks":[200,400,800], "price":[9, 3, 7]} 
>>> f1 = DataFrame(data) 
>>> f1 
     marks  name      price 
0    200    yahoo     9 
1    400    google    3 
2    800    facebook  7 

看到这个我想大家就知道dataframe其实就是干这个事的。
我们可以看到这个columns的排序是按照字母升序排的,我们可以自定义。

>>> f2 = DataFrame(data, columns=['name','price','marks']) 
>>> f2 
       name     price  marks 
0     yahoo     9      200 
1    google     3      400 
2  facebook     7      800 
pandas学习_第2张图片
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
   ....:                      'B' : pd.Timestamp('20130102'),
   ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
   ....:                      'D' : np.array([3] * 4,dtype='int32'),
   ....:                      'E' : pd.Categorical(["test","train","test","train"]),
   ....:                      'F' : 'foo' })
   ....: 

In [11]: df2
Out[11]: 
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
In [12]: df2.dtypes
Out[12]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
>>> data = {"name":["yahoo","google","facebook"], "marks":[200,400,800], "price":[9, 3, 7]} 
>>> f3 = DataFrame(data, columns=['name', 'price', 'marks', 'debt'], index=['a','b','c']) 
>>> f3 
       name      price  marks  debt 
a     yahoo      9      200     NaN 
b    google      3      400     NaN 
c  facebook      7      800     NaN 

>>> f3.columns 
Index(['name', 'price', 'marks', 'debt'], dtype=object) 

>>> f3['name'] 
a       yahoo 
b      google 
c    facebook 
Name: name 

>>> f3['debt'] = 89.2 
>>> f3 
       name     price  marks  debt 
a     yahoo     9        200  89.2 
b    google     3        400  89.2 
c  facebook     7        800  89.2

>>> sdebt = Series([2.2, 3.3], index=["a","c"])    #注意索引 
>>> f3['debt'] = sdebt 

>>> f3 
       name  price  marks  debt 
a     yahoo  9        200   2.2 
b    google  3        400   NaN 
c  facebook  7        800   3.3

>>> f3["price"]["c"]= 300 
>>> f3 
       name   price   marks  debt 
a     yahoo   9       200    2.2 
b    google   3       400    NaN 
c  facebook   300     800    3.3 

See the top & bottom rows of the frame

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

In [18]: df.values
Out[18]: 
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])

head是截取前5行。

Describe shows a quick statistic summary of your data

In [19]: df.describe()
Out[19]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

Transposing your data

In [20]: df.T
Out[20]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

Selecting via [], which slices the rows.

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

In [26]: df.loc[dates[0]]
Out[26]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

In [27]: df.loc[:,['A','B']]
Out[27]: 
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

关于 csv 文件

csv 是一种通用的、相对简单的文件格式,在表格类型的数据中用途很广泛,很多关系型数据库都支持这种类型文件的导入导出,并且 excel 这种常用的数据表格也能和 csv 文件之间转换。

name,physics,python,math,english
Google,100,100,25,12
Facebook,45,54,44,88
Twitter,54,76,13,91
Yahoo,54,452,26,100
>>> with open("./marks.csv") as f:
...     for line in f:
...         print line
... 
name,physics,python,math,english

Google,100,100,25,12

Facebook,45,54,44,88

Twitter,54,76,13,91

Yahoo,54,452,26,100
>>> import csv 
>>> dir(csv)
['Dialect', 'DictReader', 'DictWriter', 'Error', 'QUOTE_ALL', 'QUOTE_MINIMAL', 'QUOTE_NONE', 'QUOTE_NONNUMERIC', 'Sniffer', 'StringIO', '_Dialect', '__all__', '__builtins__', '__doc__', '__file__', '__name__', '__package__', '__version__', 'excel', 'excel_tab', 'field_size_limit', 'get_dialect', 'list_dialects', 're', 'reader', 'reduce', 'register_dialect', 'unregister_dialect', 'writer']
>>> import pandas as pd
>>> marks = pd.read_csv("./marks.csv")
>>> marks
       name  physics  python  math  english
0    Google      100     100    25       12
1  Facebook       45      54    44       88
2   Twitter       54      76    13       91
3     Yahoo       54     452    26      100

>>> marks.sort(column="python")
       name  physics  python  math  english
1  Facebook       45      54    44       88
2   Twitter       54      76    13       91
0    Google      100     100    25       12
3     Yahoo       54     452    26      100

代码分享就到这。。。

你可能感兴趣的:(pandas学习)