- P1328 [NOIP 2014 提高组] 生活大爆炸版石头剪刀布
让我上个超影吧
算法算法
题目背景NOIP2014提高组D1T1题目描述石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头。如果两个人出拳一样,则不分胜负。在《生活大爆炸》第二季第8集中出现了一种石头剪刀布的升级版游戏。升级版游戏在传统的石头剪刀布游戏的基础上,增加了两个新手势:斯波克:《星际迷航》主角之一。蜥蜴人:《星际迷航》中的反面角色。这五种手势的胜负关系如表一所示,表中列出的是甲对乙的游戏结果。现在,小A和
- python 网格数据插值_python – 网格数据的快速插值
weixin_39747399
python网格数据插值
当然!有两个选项可以做不同的事情,但是既能利用原始数据的定期网格性质。第一个是scipy.ndimage.zoom.如果你只想通过内插原始数据生成一个更加密集的规则网格,那就是要走的路。第二个是scipy.ndimage.map_coordinates.如果你想在你的数据中插入一些(或许多)任意点,但仍然利用原始数据的定期网格性质(例如,不需要四叉树),那就是去的方式。作为一个快速示例(这将使用三
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- Python(1)Python全方位指南:定义、应用与零基础入门实战
一个天蝎座 白勺 程序猿
Python入门到精通python开发语言
背景:为什么Python成为开发者必备技能?Python自1991年发布以来,凭借“简单高效”的设计理念,成为全球增长最快的编程语言。根据TIOBE2023年榜单,Python稳居前三,其核心竞争力包括:开发效率高:代码量仅为Java的1/5,C++的1/10。跨领域通吃:从Web开发到AI训练,覆盖90%以上技术场景。企业级应用:YouTube用Python处理视频推荐,NAS
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 如何减少跨团队交付摩擦?——基于 DevOps 与敏捷的最佳实践
pythonyaml
摘要在现代软件开发中,跨团队协作的挑战主要体现在需求变更、测试环境不匹配、沟通不畅,这些问题往往导致交付延迟。本文将探讨如何通过DevOps、Scrum以及协作文档来提升跨团队协作效率,并提供可运行的Demo代码模块,帮助读者落地最佳实践。引言在企业软件开发中,产品、开发、测试、运维、设计团队之间的交付摩擦是常见问题。造成这些摩擦的核心原因包括:需求变更频繁:需求文档未同步,开发与产品理解偏差。测
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- 第二十四篇 SQL优化之高级用法
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、调优基本功:看懂SQL的"体检报告"1.1给SQL做体检(执行计划分析)1.2给数据表"建索引"的正确姿势二、不改SQL也能提速的秘籍2.1分区表:把大象切成牛排2.2物化视图:给常用查询拍快照三、SQL改写:让你的查询脱胎换骨3.1告别全表扫描:日期查询优化3.2子查询转JOIN:速度提升10倍四、高级SQL:让你的代码更优雅4.1分组统计绝招(GROUPBY扩展)4.2MERGE语句:
- 从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
码事漫谈
AI人工智能
文章目录第一部分:AI开发的背景与历史1.1人工智能的起源与发展1.2神经网络与深度学习的崛起1.3Transformer架构与LLM的兴起1.4当前AI开发的现状与趋势第二部分:AI开发的核心技术2.1机器学习:AI的基础2.1.1机器学习的类型2.1.2机器学习的流程2.2深度学习:机器学习的进阶2.2.1神经网络基础2.2.2深度学习的关键架构2.3Transformer架构:现代LLM的核
- DeepSeek 在代码生成方面的优势解析
草莓屁屁我不吃
人工智能aichatgpt
在AI代码生成领域,DeepSeek通过其DeepSeek-Coder模型展现出强大的能力,与OpenAI的Codex、Meta的CodeLlama、Google的AlphaCode等国际领先模型同台竞争。文章将详细解析DeepSeek在代码生成方面的优势,包括模型架构、数据训练、优化策略、编程语言支持、推理效率等核心技术点。1.DeepSeek-Coder的模型架构优化DeepSeek-Code
- 案例驱动的 IT 团队管理:创新与突破之路:第一章 重构 IT 团队管理:从传统到创新-2.1.2关键岗位胜任力模型设计
言析数智
案例驱动的IT团队管理:创新与突破之路IT项目管理关键岗位胜任力模型
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲第二章团队组建:从人才画像到生态构建-2.1.2关键岗位胜任力模型设计一、胜任力模型的核心理念与价值1.**传统选才vs胜任力驱动选才**2.**冰山模型:胜任力的分层结构**二、胜任力模型构建的六步法1.**战略对齐与岗位分析**2.**行为事件访谈(BEI)**3.**数据建模与验证**4.**模型分层与指标定义**5.**试点应用与迭代优化*
- linux桌面版安装输入法,Debian KDE桌面安装五笔和拼音输入法
游志军
linux桌面版安装输入法
本文将向读者展示如何在DebianKDE桌面安装五笔输入法。本文分两部分,第一部分介绍ibus平台输入法的安装;第二部分是fcitx平台输入法的安装。读者可以选择安装ibus,也可以选择安装fcitx。如果你使用的是Gnome桌面,请参考DebianGnome桌面安装ibus五笔输入法。ibus平台的五笔输入法和拼音输入法在DebianKDE桌面安装ibus平台下的输入法,需要在终端中执行下面的命
- go python 比较 devops_5 大 DevOps 工具,你用过几个?
weixin_39692271
gopython比较devops
DevOps的概念在软件开发行业中逐渐流行起来。越来越多的团队希望实现产品的敏捷开发,DevOps使一切成为可能。有了DevOps,团队可以定期发布代码、自动化部署、并将持续集成/持续交付作为发布过程的一部分。虽然DevOps背后有各种各样的概念,但幸好有一些工具可以让你更容易地理解和实现。在本文中,你将了解这些工具,并将它们作为软件发布/维护工具包工作的一部分开始使用。DevOps有很多可使用的
- 如何减少跨团队交付摩擦?——基于 DevOps 与敏捷的最佳实践
网罗开发
实战实战源码devops运维
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- python代码重构技巧_Python代码重构指南,老师Bryan Beecham完结
weixin_39916479
python代码重构技巧
本套课程由BryanBeecham,全球知名敏捷开发教练主讲的:Python代码重构指南。重构是软件改进的核心,它使软件拥有更好的结构和性能,也使代码更易于理解、修改和扩展。尽管重构并不是新事物,但是软件开发人员仍然会苦恼于如何正确地进行重构。随着敏捷运动的发展,DevOps之类的概念不断追求高质量和精心设计的代码,以实现更快的部署和反馈。不过,现有的很多关于重构的教程都基于Java语言,关于Py
- DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?
facaixxx2024
AI大模型人工智能算法深度学习
deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b参数规模参数规模的区别,模
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- Python第二十三课:自监督学习 | 无标注数据的觉醒
程之编
Python全栈通关秘籍python开发语言人工智能机器学习
本节目标理解自监督学习的核心范式与优势掌握对比学习(ContrastiveLearning)框架实现图像掩码自编码器(MaskedAutoencoder)开发实战项目:亿级参数模型轻量化探索数据增强的创造性艺术一、自监督学习基础(AI的拼图游戏)1.核心思想解析学习范式数据需求生活比喻监督学习海量标注数据老师逐题批改作业无监督学习纯无标签数据自学杂乱笔记自监督学习自动生成伪标签玩拼图游戏(根据碎片
- 【从零开始学习计算机科学】软件工程(一)软件工程中的过程模型
贫苦游商
学习软件工程过程模型瀑布模型敏捷开发极限编程V模型
【从零开始学习计算机科学】软件工程(一)软件工程中的过程模型软件与软件工程软件工程具有以下核心要素软件工程中的过程模型惯用过程模型瀑布模型V模型增量过程模型演化过程模型原型模型螺旋模型协同开发模型喷泉模型专用过程模型构件组装模型统一过程模型(RUP)统一过程模型的起源与发展面向对象UMLRUP有9个工作流:敏捷模型敏捷开发的立场极限编程工业级极限编程(IXP)ScrumScrum中有三种角色:Sc
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- MindSpore:华为全场景AI框架的技术全景与生态实践
彩旗工作室
人工智能人工智能
一、框架概述MindSpore(昇思)是华为自主研发的全场景AI计算框架,于2020年3月开源,旨在实现易开发、高效执行、灵活部署三大核心目标。作为华为昇腾AI生态的基石,MindSpore支持端、边、云全场景覆盖,并深度融合昇腾处理器的算力特性,提供从模型开发、训练到推理部署的端到端能力。截至2025年,其月度开发者访问量已突破12万,成为国内开源社区最活跃的AI框架之一。二、架构设计MindS
- 过拟合:机器学习中的“死记硬背”陷阱
彩旗工作室
人工智能机器学习人工智能
在机器学习中,过拟合(Overfitting)是一个几乎每个从业者都会遇到的经典问题。它像一把双刃剑:当模型过于“聪明”时,可能会陷入对训练数据的过度依赖,从而失去处理新问题的能力。本文将从原理到实践,深入探讨过拟合的本质及应对策略。1.什么是过拟合?过拟合是指模型在训练数据上表现极佳,但在新数据(测试数据或真实场景数据)上表现显著下降的现象。通俗来说,模型像一个“死记硬背的学生”,记住了训练集中
- Python—JSON格式标签转换为TXT格式标签详细教程2(附完整代码)
资源补给站
python图像处理笔记pythonjson开发语言
这个代码主要是解析一个json文件转换成多个txt文件使用的,尤其是便于yolo训练decode_json函数中的convert函数确实是用于将坐标缩放到0-1之间的。但是,您在调用decode_json函数时设置了is_convert=False,这意味着坐标缩放功能被关闭了代码详解数字规范化的会将坐标缩放至(0—1)区间主要是修改这两个地方即可,话不多说,咱们直接附代码#下面是将`is_con
- AI技术学习笔记系列001:FastLanguageModel.get_peft_model 函数各参数的详细解释
新说一二
人工智能学习笔记
以下是关于代码中FastLanguageModel.get_peft_model函数各参数的详细解释,以及企业实际微调时的选择考量:参数详解及对微调的影响1.r=32(秩)作用:控制LoRA适配器的低秩矩阵的维度(秩),直接影响可训练参数数量。影响:r越大:适配器表达能力更强,能捕捉更复杂的任务特征,但可能导致过拟合(尤其数据量少时),训练时间和显存占用增加。r越小:参数量少,训练更快,显存占用低
- 【虚幻C++笔记】枚举UENUM、结构体USTRUCT
OSwich
虚幻C++笔记虚幻c++笔记
目录枚举(UENUM)第一种:使用命名空间第二种:继承uint8通过申明class类别名来替代结构体(USTRUCT)枚举(UENUM)第一种:使用命名空间UENUM(BlueprintType)namespaceMyEnumType{enumMyCustomEnum{Type1,//或者使用带DisplayName别名==>Enum1UMETA(DisplayName="Type1"),Type
- PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码
max500600
算法pythonYOLO深度学习人工智能
以下是一个使用PyTorch实现ConditionalDCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和4个工艺参数,根据这些输入生成相应的图片。1.导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvisionimporttorchvision.
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 一文搞懂 AI Agent 与 AI 大模型的区别
a小胡哦
人工智能ManusAiagent
在人工智能蓬勃发展的当下,新术语和新技术层出不穷。AIAgent和AI大模型便是其中的“明星”,但不少人对它们的区别感到困惑。今天,我们就以Manus这类AIAgent为例,深入剖析AIAgent与一般AI大模型的不同之处。Manus:Manus定义与核心能力AI大模型AI大模型是基于深度学习架构,通过海量数据训练得到的复杂模型,像GPT-4、文心一言等。它们具备强大的知识储备和语言理解生成能力,
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(