TF-IDF基本概念和原理

1、TF-IDF基本概念

      TF-IDF是Term Frequency - Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。前面的TF也就是我们前面说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解。关键是后面的这个IDF,即“逆文本频率”如何理解。我们讲到几乎所有文本都会出现的"to"其词频虽然高,但是重要性却应该比词频低的"China"和“Travel”要低。我们的IDF就是来帮助我们来反应这个词的重要性的,进而修正仅仅用词频表示的词特征值。概括来讲, IDF反应了一个词在所有文本中出现的频率,如果一个词在很多的文本中出现,那么它的IDF值应该低,比如上文中的“to”。而反过来如果一个词在比较少的文本中出现,那么它的IDF值应该高。比如一些专业的名词如“Machine Learning”。这样的词IDF值应该高。一个极端的情况,如果一个词在所有的文本中都出现,那么它的IDF值应该为0。
       上面是从定性上说明的IDF的作用,那么如何对一个词的IDF进行定量分析呢?这里直接给出一个词x的IDF的基本公式如下:
IDF(x) = log\frac{N}{N(x)}
       其中,N代表语料库中文本的总数,而N(x)代表语料库中包含词x的文本总数。为什么IDF的基本公式应该是是上面这样的而不是像N/N(x)这样的形式呢?这就涉及到信息论相关的一些知识了。感兴趣的朋友建议阅读吴军博士的《数学之美》第11章。
     上面的IDF公式已经可以使用了,但是在一些特殊的情况会有一些小问题,比如某一个生僻词在语料库中没有,这样我们的分母为0, IDF没有意义了。所以常用的IDF我们需要做一些平滑,使语料库中没有出现的词也可以得到一个合适的IDF值。平滑的方法有很多种,最常见的IDF平滑后的公式之一为:
IDF(x) = log\frac{N+1}{N(x)+1} + 1
 有了IDF的定义,我们就可以计算某一个词的TF-IDF值了:
TF-IDF(x) = TF(x) * IDF(x)
 其中TF(x)指词x在当前文本中的词频。

2、TF-IDF小结

      TF-IDF是非常常用的文本挖掘预处理基本步骤,但是如果预处理中使用了Hash Trick,则一般就无法使用TF-IDF了,因为Hash Trick后我们已经无法得到哈希后的各特征的IDF的值。使用了IF-IDF并标准化以后,我们就可以使用各个文本的词特征向量作为文本的特征,进行分类或者聚类分析。当然TF-IDF不光可以用于文本挖掘,在信息检索等很多领域都有使用。因此值得好好的理解这个方法的思想。

你可能感兴趣的:(TF-IDF基本概念和原理)