- 如何在工作中如何践行“细.快.实”的工作作风
马玉峰
【如何在工作中如何践行“细.快.实”的工作作风】1、细:细节决定成败,精耕细作,丝缕求细,才能把事情做好。窥一斑而知豹,落一叶便知秋,每处细节,都是标签,都是名片。一件小事,可以成就你,也可以否定你。就有这么一段关于英国理查三世脍炙人口的民谣:丢失一个钉子,坏了一只蹄铁;坏了一只蹄铁,折了一匹战马;折了一匹战马,伤了一位骑士;伤了一位骑士,输了一场战斗;输了一场战斗,亡了一个帝国。说的就是理查三世
- 用具身认知聊聊阿丽塔的身心合一
一味心斋
导读:阿丽塔中的很多情节,让我感觉到与心理学中具身认知的研究成果相对应,也让我进一步体会到了身心合一的感觉,出于个人触类旁通的想法,虽然有点天马行空,但还是基于理论的延伸,希望给大家带来一点别样的感悟。都说“你如果拿着一把锤子,那么你看什么都是钉子”,由于近两年读了很多跟脑神经学相关的书籍,再加上最近对具身认知的理解,当我在看阿丽塔的时候,忍不住用具身认知的知识来理解其中的一些情节,倒也觉得挺合理
- 钉子的故事
a梦含烟
2020.3.27故事1:有一个小男孩,在成长的过程中,总是不能控制自己的情绪,稍不如意,就会无缘无故地生气和乱发脾气。没有人愿意和他做朋友。为此,小男孩十分难过,他来到父亲的书房请教。父亲给了他一大包钉子,并告诉他,坏脾气爱生气对人对己都不好,今后你如果实在忍不住,想发脾气或生气时就用铁锤在他家后院的栅栏上钉一颗钉子。第一天,小男孩在栅栏上钉了37颗钉子。后面几天里,小男孩试着控制自己的情绪,遇
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 贫困村的“金葡萄”
16878147c752
(通讯员:姜浩、吴遇林)2018年8月31日,湘潭大学法学院赴湘西实践团走进泸溪县洗溪镇洞底坪村,探索该村脱贫的秘密。经过调研,团队成员们发现,这个传统的贫困村通过产业扶贫,建设葡萄产业园,用“金葡萄”带动全村脱贫致富。洞底坪村位于半山腰,交通不便,团队成员们驱车在盘山公路上一路颠簸来到这个曾经是脱贫钉子村的小村落。洞底坪村团队成员经过走访获悉,2012年几户贫困户开始探索脱贫的道路,他们建立了农
- Top-K准确率代码实现
友人Chi
python机器学习开发语言
文章目录Top-K准确率Top-K准确率的代码实现多标签分类准确率的代码实现Top-K准确率Top-K准确率就是用来计算预测结果中概率最大的前K个结果包含正确标签的占比。换句话说,平常我们所说的准确率其实就是Top-1准确率。下面我们还是通过一个例子来进行说明。假如现在有一个用于手写体识别的分类器(10分类),你现在将一张正确标签为3的图片输入到分类器中且得到了如下所示的一个概率分布:logits
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 把“批发式”的社交变为“零售式”社交,建立真正有效的社交圈
恢复后的我
亚力士多德曾说过,脱离城邦孤独生活的人,不是神灵便是野兽不同的人对社交生活的看法完全不同,有些人宁愿呆在家里吃泡面,也不愿意出门和一群人吃大餐,一想到要出门见人就会压力上升,心烦意乱;而有些人只要天一黑就受不住,想睡沙发上长出了钉子,必须要出门见见人,就好像不那么做,自己就会被空虚一口吞掉一样无论哪一种,都会给人带来困扰,只有等到年龄增长到一定程度,成熟起来,才会逐渐明白,什么叫做“避免无效社交”
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 颜色识别基于高斯混合模型(GMM)的查找表分类器(LUT)
吃个糖糖
Halcon人工智能机器学习
文章目录create_class_gmm创建高斯混合模型(GMM)以进行分类任务add_samples_image_class_gmm提取训练样本,并将其添加到高斯混合模型(GMM)的训练数据集中train_class_gmm训练一个高斯混合模型(GMM)clear_class_gmm清除模型create_class_lut_gmm基于已训练的高斯混合模型(GMM)创建一个查找表(LUT),用于分
- 【可控图像生成系列论文(四)】IP-Adapter 具体是如何训练的?1公式篇
多恩Stone
AIGCDiffusionTransformer计算机视觉深度学习pythonAIGCpytorch机器学习人工智能
系列文章目录【可控图像生成系列论文(一)】简要介绍了MimicBrush的整体流程和方法;【可控图像生成系列论文(二)】就MimicBrush的具体模型结构、训练数据和纹理迁移进行了更详细的介绍。【可控图像生成系列论文(三)】介绍了一篇相对早期(2018年)的可控字体艺术化工作。文章目录系列文章目录前言〇、文生图模型预备知识1.训练目标2.无分类器指导(classifier-freeguidanc
- 01-30
姬汉斯
今天看的是关于文档识别和分类的处理案例。利用多项式贝叶斯公式计算TF-IDF值,以此计算出文档中的词频,文档频率等数据属性,TFIDFVectorizer类用于进行整理,NTLK包进行标注处理,计算文档中各个字符的权重,通过分类器进行分类处理。Sklearn在其中依然有巨大作用,还在熟悉其特性
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- 从应县木塔说起
孤岸明灯
十几年前我第一次去应县木塔的时候,惊讶于这么一座榫卯结构纯木建筑竟然能保存至今之余,还能上到二层,现在只能在一层转转了,据报道早就有提议要对木塔进行修复,但到今天也一直没有确定方案,这其中涉及的问题还不只是技术本身那么简单,更涉及到我们文保原则的争论。一般说到文保,我们能想到的就是修旧如旧,那么这个旧指的具体是什么时代,在操作中如何把握,是必须坚持完全榫卯,还是也可以为了保护文物而加上钉子,恢复文
- 图形几何算法 -- 凸包算法
CAD三维软件二次开发
算法学习算法c#3d几何学
前言常用凸包算法包括GrahamScan算法和JarvisMarch(GiftWrapping)算法,在这里要简单介绍的是GrahamScan算法。1、概念凸包是一个点集所包围的最小的凸多边形。可以想象用一根绳子围绕着一群钉子,绳子所形成的轮廓便是这些钉子的凸包。在计算几何中,凸包得到了广泛的应用,涉及领域包括模式识别、图像处理和优化问题等。2、算法原理凸包算法的目标是从给定的点集(在二维平面中)
- 2018-11-07 偏执的人,成也萧何,败也萧何
吴佩在天涯
一个人有主见的人,其实就是一个有偏见的人。有主见即是有偏见。一个有主见的人,就是一个始终相信自己的人,很多时候,都是靠着自己相信的东西获得了成功或者想要的东西。但问题也正在于此,正所谓:成也萧何,败也萧何。以前,不懂,最近才真的读懂这句话,也就是芒格说的:一个手里只有锤子的人,他的眼里都是钉子。有主见的人,最容易变成偏执的人。偏执的人,和固执的人不同,偏执的人,只是太过相信自己而已,并不是一味排斥
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- (二)十分简易快速 自己训练样本 opencv级联lbp分类器 车牌识别
Sisphusssss
opencv人工智能计算机视觉笔记python学习
强烈建议先阅读上一篇博文,此篇博文是上一篇的拓展目录1、haar与lbp分类器的对比2、使用工具对LBP特征类型进行训练3、LBP分类器现象展示4、完整代码贴出5、更新后的工程贴出6、结语1、haar与lbp分类器的对比Haar特征分类器的优缺点:优点:准确性:在训练数据充足且质量高的情况下,Haar分类器可以达到很高的检测准确率。成熟稳定:Haar特征分类器是较早使用的特征检测方法之一,经过多年
- 本期不写历史人物,秦岭一白又要胡说些天道、历史、人性...
秦岭一白
距离山脚八公里,今年却很少进秦岭。自从年初疫情暂缓,小梧桐紧接着来到世间。之后小半年都在家里带娃,土蜂蜜断货也没工夫进山再找找。历史人物变成两周一位,而且越写越觉得艰难。一是业余爱好的体系性差,二是字数不受控般飙至七八千字。或许,已经沦为只有自己翻阅的文章。每当读到“官窍”部分,总会升起异样的感觉。好像能看见一枚钉子,将自身某些影子楔入文字的缝隙。从海瑞到苏颂,钉子的外相在丰富变幻。他们会在未来某
- 数学建模(多分类问题)
不以物喜a
数学建模逻辑回归分类人工智能数学建模算法pythonscikit-learn
前言多分类问题是机器学习中的一种常见任务,其目标是将输入数据分配到三个或更多预定义的类别之中。解决这类问题的方法包括一对一(One-vs-One,OvO)和一对多(One-vs-All,OvA或One-vs-Rest,OvR)策略,前者通过构建多个分类器来比较每对类别,后者则是为每个类别构建一个分类器以区别该类别和其他所有类别。这些技术有助于从给定的训练数据集中学习分类模型,并在新的未知数据上进行
- 鸢尾花的简单分类器
Oneshot_fea8
importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromscipy.spatial.distanceimporteuclideanimportnumpyasnpDATA_FILE='./data_ai/Iris.csv'SPECIES=['Iris-setosa',#山鸢尾'Iris-versicolor',#变色鸢
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- python中func自定义函数_Python函数之自定义函数&作用域&闭包
瞄小七.sunshine
一前言1.1为什么要用函数代码的组织结构更清晰,可读性好;遇到重复的功能不需要重新编写代码,调用函数即可,代码不会冗余;功能需要扩展时,只需要修改函数内容即可,实现统一管理,降低代码维护难度函数式编程最重要的是增强代码的重用性和可读性1.2函数是什么想象生活中的例子,修理工需要事先准备好工具箱里面放好锤子,扳手,钳子等工具,然后遇到锤钉子的场景,拿来锤子用就可以,而无需临时再制造一把锤子。修理工-
- 定位重要性
灵竹_9989
企业要定位,个人发展更要定位,定位不是说你只能做一样事情,而是说你在一件事情没做好之前,不要同时做很多,专注才能在一个点找到突破。我们知道钉钉子的原理,钉子要钉进木头,肯定是在一个点不停的用锤子去锤,它才能进去,如果碰到一个地方,锤两下,好像没进去又换另一个地方锤两下,这个钉子会在反复敲击下弯了或是断了,最后还是没扎进木板。所以找好方向非常重要。杨天真是我最近关注的明星经纪人,人长得不咋样,又胖面
- 智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序 【优化算法可以替换成其他优化方法】
机器不会学习CL
智能优化算法智能优化特征选择算法支持向量机matlab
智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】文章目录一、PO基本原理基本原理基本流程示例应用二、实验结果三、核心代码四、代码获取五、总结智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】一、PO基本原理鹦鹉
- 中原焦点团队杨小杰坚持分享第174天2021-2-8
yxjlady
焦点咨询大方向:主题、目标、资源、一小步。还有滚雪球效应,今天看到下面的内容,让自己体验更深刻!一个钉子消灭一个国家(蝴蝶效应)1485年,英王理查三世与亨利伯爵在波斯沃斯展开决战。此役将决定谁是英国王位的新得主。战前,马夫为国王备马掌钉。铁匠因近日来一直忙于为国王军队的军马掌钉,铁片已用尽。于是,请求去找。马夫不耐烦地催促道:“国王要打头阵,等不及了!”铁匠只好将一根铁条截为四份,加工成马掌。当
- 基于OpenCV-Python实现人脸识别-----摄像头捕获人脸图像显示中文乱码问题
匹数
opencvpython人工智能
基于OpenCV-Python实现人脸识别时,为了使图像上显示识别到人员的中文名字,做了几次尝试,使用PIL.Image和OpenCV图像格式相互转换解决:使用OpenCV将图片灰度化,对加载的灰度化图使用分类器中的detectMultiScale()函数查找目标人脸,并使用for循环实现矩形框和圆形框框住查找到的人脸。再使用OpenCV中识别器face.LBPHFaceRecognizer()方
- 利用贝叶斯和决策树 来进行医疗诊断的
杨航 AI
决策树算法机器学习
要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。以下是一个基本的实现思路:数据准备:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。贝叶斯分类器:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。决策树:我们使用决策
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D