机器学习 Day 11 | 决策树案例实现(1)

机器学习第十一天 决策树项目案例(1)

周末好鸭,8月真的巨忙,决策树2个案例实现后下周开始划水只看看各算法的基础概念了,等一个项目交付完

项目案例1:判断鱼类和非鱼类

项目概述

根据以下2个特征,将动物分成两类:鱼类和非鱼类。

特征:
1.不浮出水面是否可以生存
2.是否有脚蹼

开发流程

收集数据:可以使用任何方法
准备数据:树构造算法(这里使用的是ID3算法,因此数值型数据必须离散化。)
分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。
训练算法:构造树结构
测试算法:使用习得的决策树执行分类
使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义

收集数据:可以使用任何方法

机器学习 Day 11 | 决策树案例实现(1)_第1张图片

我们使用createDataSet()函数输入数据

def createDataSet():
    dataSet = [[1, 1, 'yes'],
            [1, 1, 'yes'],
            [1, 0, 'no'],
            [0, 1, 'no'],
            [0, 1, 'no']]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels

准备数据:树构造算法

此处,由于我们输入的数据本身就是离散化数据,所以这一步就省略了。

分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。

熵的计算公式.jpg

计算给定数据集的香浓熵的函数

def calcShannonEnt(dataSet):
    # 求list的长度,表示计算参与训练的数据量
    numEntries = len(dataSet)
    # 计算分类标签label出现的次数
    labelCounts = {}
    # the the number of unique elements and their occurrence
    for featVec in dataSet:
        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
        currentLabel = featVec[-1]
        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1

    # 对于 label 标签的占比,求出 label 标签的香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        # 使用所有类标签的发生频率计算类别出现的概率。
        prob = float(labelCounts[key])/numEntries
        # 计算香农熵,以 2 为底求对数
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

按照给定特征划分数据集
将指定特征的特征值等于 value 的行剩下列作为子数据集。

def splitDataSet(dataSet, index, value):
    """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)
        就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中
    Args:
        dataSet 数据集                 待划分的数据集
        index 表示每一行的index列        划分数据集的特征
        value 表示index列对应的value值   需要返回的特征的值。
    Returns:
        index列为value的数据集【该数据集需要排除index列】
    """
    retDataSet = []
    for featVec in dataSet: 
        # index列为value的数据集【该数据集需要排除index列】
        # 判断index列的值是否为value
        if featVec[index] == value:
            # chop out index used for splitting
            # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行
            reducedFeatVec = featVec[:index]
            '''
            请百度查询一下: extend和append的区别
            music_media.append(object) 向列表中添加一个对象object
            music_media.extend(sequence) 把一个序列seq的内容添加到列表中 (跟 += 在list运用类似, music_media += sequence)
            1、使用append的时候,是将object看作一个对象,整体打包添加到music_media对象中。
            2、使用extend的时候,是将sequence看作一个序列,将这个序列和music_media序列合并,并放在其后面。
            music_media = []
            music_media.extend([1,2,3])
            print music_media
            #结果:
            #[1, 2, 3]
            
            music_media.append([4,5,6])
            print music_media
            #结果:
            #[1, 2, 3, [4, 5, 6]]
            
            music_media.extend([7,8,9])
            print music_media
            #结果:
            #[1, 2, 3, [4, 5, 6], 7, 8, 9]
            '''
            reducedFeatVec.extend(featVec[index+1:])
            # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据
            # 收集结果值 index列为value的行【该行需要排除index列】
            retDataSet.append(reducedFeatVec)
    return retDataSet

选择最好的数据集划分方式

def chooseBestFeatureToSplit(dataSet):
    """chooseBestFeatureToSplit(选择最好的特征)

    Args:
        dataSet 数据集
    Returns:
        bestFeature 最优的特征列
    """
    # 求第一行有多少列的 Feature, 最后一列是label列嘛
    numFeatures = len(dataSet[0]) - 1
    # 数据集的原始信息熵
    baseEntropy = calcShannonEnt(dataSet)
    # 最优的信息增益值, 和最优的Featurn编号
    bestInfoGain, bestFeature = 0.0, -1
    # iterate over all the features
    for i in range(numFeatures):
        # create a list of all the examples of this feature
        # 获取对应的feature下的所有数据
        featList = [example[i] for example in dataSet]
        # get a set of unique values
        # 获取剔重后的集合,使用set对list数据进行去重
        uniqueVals = set(featList)
        # 创建一个临时的信息熵
        newEntropy = 0.0
        # 遍历某一列的value集合,计算该列的信息熵 
        # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            # 计算概率
            prob = len(subDataSet)/float(len(dataSet))
            # 计算信息熵
            newEntropy += prob * calcShannonEnt(subDataSet)
        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
        infoGain = baseEntropy - newEntropy
        print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

问:上面的 newEntropy 为什么是根据子集计算的呢?
答:因为我们在根据一个特征计算香农熵的时候,该特征的分类值是相同,这个特征这个分类的香农熵为 0;
这就是为什么计算新的香农熵的时候使用的是子集。
训练算法:构造树的数据结构

训练算法:构造树的数据结构

创建树的函数代码如下:

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
    # count() 函数是统计括号中的值在list中出现的次数
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    # 选择最优的列,得到最优列对应的label含义
    bestFeat = chooseBestFeatureToSplit(dataSet)
    # 获取label的名称
    bestFeatLabel = labels[bestFeat]
    # 初始化myTree
    myTree = {bestFeatLabel: {}}
    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
    del(labels[bestFeat])
    # 取出最优列,然后它的branch做分类
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 求出剩余的标签label
        subLabels = labels[:]
        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        # print 'myTree', value, myTree
    return myTree

测试算法:使用决策树执行分类


def classify(inputTree, featLabels, testVec):
    """classify(给输入的节点,进行分类)

    Args:
        inputTree  决策树模型
        featLabels Feature标签对应的名称
        testVec    测试输入的数据
    Returns:
        classLabel 分类的结果值,需要映射label才能知道名称
    """
    # 获取tree的根节点对于的key值
    firstStr = inputTree.keys()[0]
    # 通过key得到根节点对应的value
    secondDict = inputTree[firstStr]
    # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
    featIndex = featLabels.index(firstStr)
    # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
    # 判断分枝是否结束: 判断valueOfFeat是否是dict类型
    if isinstance(valueOfFeat, dict):
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else:
        classLabel = valueOfFeat
    return classLabel

你可能感兴趣的:(机器学习 Day 11 | 决策树案例实现(1))