代码出处
https://users.cs.fiu.edu/~weiss/
各种实现
- Java实现
Data Structures and Algorithm Analysis in Java (Third Edition)
CS-7 Text
https://users.cs.fiu.edu/~weiss/dsaajava3/code/
Fig02_09.java: Test program for binary search
BinarySearchTree.java: Binary search tree
测试运行
- 源码文件:
BinarySearchTree.java
以及Fig02_09.java
(放置到同一个文件夹下面) - 编译运行:
> cd bst
> ls
BinarySearchTree.java
Fig02_09.java
> javac Fig02_09.java
> java Fig02_09
Found 0 at 0
Found 1 at -1
Found 2 at 1
Found 3 at -1
Found 4 at 2
Found 5 at -1
Found 6 at 3
Found 7 at -1
Found 8 at 4
Found 9 at -1
Found 10 at 5
Found 11 at -1
Found 12 at 6
Found 13 at -1
Found 14 at 7
Found 15 at -1
算法分析
删除操作 remove
3种情况
Case 1
: 要删除的结点,本身是一个叶子结点,直接删除即可;-
Case 2
:要删除的结点,只有一个孩子,让其父结点指向其孩子结点即可;
-
Case 3
:要删除的结点,有两个孩子,先用其右子树的最小数据替换该结点,然后递归地删除那个最小数据的结点(这个最小数据结点一定是没有左孩子的);
remove 实现
/**
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private BinaryNode remove( AnyType x, BinaryNode t )
{
if( t == null )
return t; // Item not found; do nothing
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = remove( x, t.left );
else if( compareResult > 0 )
t.right = remove( x, t.right );
else if( t.left != null && t.right != null ) // Two children
{
t.element = findMin( t.right ).element;
t.right = remove( t.element, t.right );
}
else
t = ( t.left != null ) ? t.left : t.right;
return t;
}
/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the smallest item.
*/
private BinaryNode findMin( BinaryNode t )
{
if( t == null )
return null;
else if( t.left == null )
return t;
return findMin( t.left );
}
完整源码
测试代码 Fig02_09.java
public class Fig02_09
{
public static final int NOT_FOUND = -1;
/**
* Performs the standard binary search.
* @return index where item is found, or -1 if not found
*/
public static >
int binarySearch( AnyType [ ] a, AnyType x )
{
int low = 0, high = a.length - 1;
while( low <= high )
{
int mid = ( low + high ) / 2;
if( a[ mid ].compareTo( x ) < 0 )
low = mid + 1;
else if( a[ mid ].compareTo( x ) > 0 )
high = mid - 1;
else
return mid; // Found
}
return NOT_FOUND; // NOT_FOUND is defined as -1
}
// Test program
public static void main( String [ ] args )
{
int SIZE = 8;
Integer [ ] a = new Integer [ SIZE ];
for( int i = 0; i < SIZE; i++ )
a[ i ] = i * 2;
for( int i = 0; i < SIZE * 2; i++ )
System.out.println( "Found " + i + " at " + binarySearch( a, i ) );
}
}
BST BinarySearchTree.java
// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x
// boolean contains( x ) --> Return true if x is present
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as appropriate
/**
* Implements an unbalanced binary search tree.
* Note that all "matching" is based on the compareTo method.
* @author Mark Allen Weiss
*/
public class BinarySearchTree>
{
/**
* Construct the tree.
*/
public BinarySearchTree( )
{
root = null;
}
/**
* Insert into the tree; duplicates are ignored.
* @param x the item to insert.
*/
public void insert( AnyType x )
{
root = insert( x, root );
}
/**
* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.
*/
public void remove( AnyType x )
{
root = remove( x, root );
}
/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public AnyType findMin( )
{
if( isEmpty( ) )
throw new UnderflowException( );
return findMin( root ).element;
}
/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public AnyType findMax( )
{
if( isEmpty( ) )
throw new UnderflowException( );
return findMax( root ).element;
}
/**
* Find an item in the tree.
* @param x the item to search for.
* @return true if not found.
*/
public boolean contains( AnyType x )
{
return contains( x, root );
}
/**
* Make the tree logically empty.
*/
public void makeEmpty( )
{
root = null;
}
/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty( )
{
return root == null;
}
/**
* Print the tree contents in sorted order.
*/
public void printTree( )
{
if( isEmpty( ) )
System.out.println( "Empty tree" );
else
printTree( root );
}
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private BinaryNode insert( AnyType x, BinaryNode t )
{
if( t == null )
return new BinaryNode<>( x, null, null );
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = insert( x, t.left );
else if( compareResult > 0 )
t.right = insert( x, t.right );
else
; // Duplicate; do nothing
return t;
}
/**
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private BinaryNode remove( AnyType x, BinaryNode t )
{
if( t == null )
return t; // Item not found; do nothing
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = remove( x, t.left );
else if( compareResult > 0 )
t.right = remove( x, t.right );
else if( t.left != null && t.right != null ) // Two children
{
t.element = findMin( t.right ).element;
t.right = remove( t.element, t.right );
}
else
t = ( t.left != null ) ? t.left : t.right;
return t;
}
/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the smallest item.
*/
private BinaryNode findMin( BinaryNode t )
{
if( t == null )
return null;
else if( t.left == null )
return t;
return findMin( t.left );
}
/**
* Internal method to find the largest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the largest item.
*/
private BinaryNode findMax( BinaryNode t )
{
if( t != null )
while( t.right != null )
t = t.right;
return t;
}
/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the subtree.
* @return node containing the matched item.
*/
private boolean contains( AnyType x, BinaryNode t )
{
if( t == null )
return false;
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
return contains( x, t.left );
else if( compareResult > 0 )
return contains( x, t.right );
else
return true; // Match
}
/**
* Internal method to print a subtree in sorted order.
* @param t the node that roots the subtree.
*/
private void printTree( BinaryNode t )
{
if( t != null )
{
printTree( t.left );
System.out.println( t.element );
printTree( t.right );
}
}
/**
* Internal method to compute height of a subtree.
* @param t the node that roots the subtree.
*/
private int height( BinaryNode t )
{
if( t == null )
return -1;
else
return 1 + Math.max( height( t.left ), height( t.right ) );
}
// Basic node stored in unbalanced binary search trees
private static class BinaryNode
{
// Constructors
BinaryNode( AnyType theElement )
{
this( theElement, null, null );
}
BinaryNode( AnyType theElement, BinaryNode lt, BinaryNode rt )
{
element = theElement;
left = lt;
right = rt;
}
AnyType element; // The data in the node
BinaryNode left; // Left child
BinaryNode right; // Right child
}
/** The tree root. */
private BinaryNode root;
// Test program
public static void main( String [ ] args )
{
BinarySearchTree t = new BinarySearchTree<>( );
final int NUMS = 4000;
final int GAP = 37;
System.out.println( "Checking... (no more output means success)" );
for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS )
t.insert( i );
for( int i = 1; i < NUMS; i+= 2 )
t.remove( i );
if( NUMS < 40 )
t.printTree( );
if( t.findMin( ) != 2 || t.findMax( ) != NUMS - 2 )
System.out.println( "FindMin or FindMax error!" );
for( int i = 2; i < NUMS; i+=2 )
if( !t.contains( i ) )
System.out.println( "Find error1!" );
for( int i = 1; i < NUMS; i+=2 )
{
if( t.contains( i ) )
System.out.println( "Find error2!" );
}
}
}