「TensorFlow 1.0」 Tensorboard

TensorFlow Tensorboard

本文主要介绍 TensorFlow 的 Tensorboard 模块。

Tensorboard 可以看做是我们构建的 Graph 的可视化工具,对于我们初学者理解网络架构、每层网络的细节都是很有帮助的。由于前几天刚接触 TensorFlow,所以在尝试学习 Tensorboard 的过程中,遇到了一些问题。在此基础上,参考了 TensorFlow 官方的 Tensorboard Tutorials 以及网上的一些文章。由于前不久 TensorFlow 1.0 刚发布,网上的一些学习资源或者是 tensorboard 代码在新的版本中并不适用,所以自己改写并实现了官方网站上提及的三个实例的 Tensorboard 版本:

  1. 最基础简单的「linear model」
  2. 基于 MNIST 手写体数据集的 「softmax regression」模型
  3. 基于 MNIST 手写体数据集的「CNN」模型

文章不会详细介绍 TensorFlow 以及 Tensorboard 的知识,主要是模型的代码以及部分模型实验截图。

注意:文章前提默认读者们知晓 TensorFlow,知晓 Tensorboard,以及 TensorFlow 的一些主要概念「Variables」、「placeholder」。还有,默认你已经将需要用到的 MNIST 数据集下载到了你代码当前所在文件夹。

Environment

OS: macOS Sierra 10.12.x

Python Version: 3.4.x

TensorFlow: 1.0

Tensorboard

Tensorboard有几大模块:

  • SCALARS:记录单一变量的,使用 tf.summary.scalar() 收集构建。
  • IMAGES:收集的图片数据,当我们使用的数据为图片时(选用)。
  • AUDIO:收集的音频数据,当我们使用数据为音频时(选用)。
  • GRAPHS:构件图,效果图类似流程图一样,我们可以看到数据的流向,使用tf.name_scope()收集构建。
  • DISTRIBUTIONS:用于查看变量的分布值,比如 W(Weights)变化的过程中,主要是在 0.5 附近徘徊。
  • HISTOGRAMS:用于记录变量的历史值(比如 weights 值,平均值等),并使用折线图的方式展现,使用tf.summary.histogram()进行收集构建。

Examples

  • 最简单的线性回归模型(tensorboard 绘图)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(layoutname, inputs, in_size, out_size, act = None):
    with tf.name_scope(layoutname):
        with tf.name_scope('weights'):
            weights = tf.Variable(tf.random_normal([in_size, out_size]), name = 'weights')
            w_hist = tf.summary.histogram('weights', weights)
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name = 'biases')
            b_hist = tf.summary.histogram('biases', biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, weights), biases)

        if act is None:
            outputs = Wx_plus_b
        else :
            outputs = act(Wx_plus_b)
        return outputs

x_data = np.linspace(-1, 1, 300)[:,np.newaxis]
noise = np.random.normal(0,0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

with tf.name_scope('Input'):
    xs = tf.placeholder(tf.float32, [None, 1], name = "input_x")
    ys = tf.placeholder(tf.float32, [None, 1], name = "target_y")


l1 = add_layer("first_layer", xs, 1, 10, act = tf.nn.relu)
l1_hist = tf.summary.histogram('l1', l1)

y = add_layer("second_layout", l1, 10, 1, act = None)
y_hist = tf.summary.histogram('y', y)

with tf.name_scope('loss'): 
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - y), 
                            reduction_indices = [1]))
    tf.summary.histogram('loss ', loss)
    tf.summary.scalar('loss', loss)

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.global_variables_initializer()
merged = tf.summary.merge_all()

with tf.Session() as sess:
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x_data, y_data)
    plt.ion()
    plt.show()
    
    writer = tf.summary.FileWriter('logs/', sess.graph)
    sess.run(init)
    
    for train in range(1000):
        sess.run(train_step, feed_dict = {xs: x_data, ys: y_data})
        if train % 50 == 0:
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            summary_str = sess.run(merged, feed_dict = {xs: x_data, ys: y_data})
            writer.add_summary(summary_str, train)

            print(train, sess.run(loss, feed_dict = {xs: x_data, ys: y_data}))
            
            prediction_value = sess.run(y, feed_dict = {xs: x_data})
            lines = ax.plot(x_data, prediction_value, 'r-', lw = 5)
            plt.pause(1)
  • 基於 Softmax Regressions 的 MNIST 数据集(tensorboard 绘图)
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np

def add_layer(layoutname, inputs, in_size, out_size, act = None):
    with tf.name_scope(layoutname):
        with tf.name_scope('weights'):
            weights = tf.Variable(tf.zeros([in_size, out_size]), name = 'weights')
            w_hist = tf.summary.histogram("weights", weights)
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros(out_size), name = 'biases')
            b_hist = tf.summary.histogram("biases", biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, weights), biases)
        
        if act is None:
            outputs = Wx_plus_b
        else:
            outputs = act(Wx_plus_b)
        return outputs
        
# Import data
mnist_data_path = 'MNIST_data/'
mnist = input_data.read_data_sets(mnist_data_path, one_hot = True)

with tf.name_scope('Input'):
    x = tf.placeholder(tf.float32, [None, 28 * 28], name = 'input_x')
    y_ = tf.placeholder(tf.float32, [None, 10], name = 'target_y')

y = add_layer("hidden_layout", x, 28*28, 10, act = tf.nn.softmax)
y_hist = tf.summary.histogram('y', y)

# labels 真实值 logits 预测值
with tf.name_scope('loss'):
    cross_entroy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_,
                    logits = y))
    tf.summary.histogram('cross entropy', cross_entroy)
    tf.summary.scalar('cross entropy', cross_entroy)

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entroy)

# Test trained model
with tf.name_scope('test'):
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

init = tf.global_variables_initializer()
merged = tf.summary.merge_all()

with tf.Session() as sess:
    #logpath = r'/Users/randolph/PycharmProjects/TensorFlow/logs'
    writer = tf.summary.FileWriter('logs/', sess.graph)
    sess.run(init)

    for i in range(1000):
        if i % 10 == 0:
            feed = {x: mnist.test.images, y_: mnist.test.labels}
            result = sess.run([merged, accuracy], feed_dict = feed)
            summary_str = result[0]
            acc = result[1]
            writer.add_summary(summary_str, i)
            print(i, acc)
        else:
            batch_xs, batch_ys = mnist.train.next_batch(100)
            feed = {x: batch_xs, y_: batch_ys}
            sess.run(train_step, feed_dict = feed)

    print('final result: ', sess.run(accuracy, feed_dict = {x: mnist.test.images, y_: mnist.test.labels}))
  • 基於 CNN 的 MNIST 数据集(tensorboard 绘图)
# 基于 MNIST 数据集 的 「CNN」(tensorboard 绘图)
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev = 0.1)
    return tf.Variable(initial)
    
def bias_variable(shape):
    initial = tf.constant(0.1, shape = shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean)
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev)
        tf.summary.scalar('max', tf.reduce_max(var))
        tf.summary.scalar('min', tf.reduce_min(var))
        tf.summary.histogram('histogram', var)

def add_layer(input_tensor, weights_shape, biases_shape, layer_name, act = tf.nn.relu, flag = 1):
    """Reusable code for making a simple neural net layer.

    It does a matrix multiply, bias add, and then uses relu to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read,
    and adds a number of summary ops.
    """
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            weights = weight_variable(weights_shape)
            variable_summaries(weights)
        with tf.name_scope('biases'):
            biases = bias_variable(biases_shape)
            variable_summaries(biases)
        with tf.name_scope('Wx_plus_b'):
            if flag == 1:
                preactivate = tf.add(conv2d(input_tensor, weights), biases)
            else:
                preactivate = tf.add(tf.matmul(input_tensor, weights), biases)
            tf.summary.histogram('pre_activations', preactivate)
        if act == None:
            outputs = preactivate
        else:
            outputs = act(preactivate, name = 'activation')
            tf.summary.histogram('activation', outputs)
        return outputs

def main():
    # Import data
    mnist_data_path = 'MNIST_data/'
    mnist = input_data.read_data_sets(mnist_data_path, one_hot = True)
    
    with tf.name_scope('Input'):
        x = tf.placeholder(tf.float32, [None, 28*28], name = 'input_x')
        y_ = tf.placeholder(tf.float32, [None, 10], name = 'target_y')

    # First Convolutional Layer
    x_image = tf.reshape(x, [-1, 28, 28 ,1])
    conv_1 = add_layer(x_image, [5, 5, 1, 32], [32], 'First_Convolutional_Layer', flag = 1)
    
    # First Pooling Layer
    pool_1 = max_pool_2x2(conv_1)
    
    # Second Convolutional Layer 
    conv_2 = add_layer(pool_1, [5, 5, 32, 64], [64], 'Second_Convolutional_Layer', flag = 1)

    # Second Pooling Layer 
    pool_2 = max_pool_2x2(conv_2)

    # Densely Connected Layer
    pool_2_flat = tf.reshape(pool_2, [-1, 7*7*64])
    dc_1 = add_layer(pool_2_flat, [7*7*64, 1024], [1024], 'Densely_Connected_Layer', flag = 0) 
    
    # Dropout
    keep_prob = tf.placeholder(tf.float32)
    dc_1_drop = tf.nn.dropout(dc_1, keep_prob)
    
    # Readout Layer
    y = add_layer(dc_1_drop, [1024, 10], [10], 'Readout_Layer', flag = 0)
    
    # Optimizer
    with tf.name_scope('cross_entroy'):
        cross_entroy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_,
                        logits = y))
        tf.summary.scalar('cross_entropy', cross_entroy)
        tf.summary.histogram('cross_entropy', cross_entroy)
    
    # Train
    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entroy)
    
    # Test
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy', accuracy)
        
    sess = tf.InteractiveSession()
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter('train/', sess.graph)
    test_writer = tf.summary.FileWriter('test/')
    tf.global_variables_initializer().run()

    def feed_dict(train):
        if train:
            batch_xs, batch_ys = mnist.train.next_batch(100)
            k = 0.5
        else:
            batch_xs, batch_ys = mnist.test.images, mnist.test.labels
            k = 1.0
        return {x: batch_xs, y_: batch_ys, keep_prob: k}
    
    # Train the model, and also write summaries.
    # Every 10th step, measure test-set accuracy, and write test summaries
    # All other steps, run train_step on training data, & add training summaries
    for i in range(10000):
        if i % 10 == 0: # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy], feed_dict = feed_dict(False))
            test_writer.add_summary(summary, i)
            print("step %d, training accuracy %g" %(i, acc))
        else:   # Record train set summaries, and train
            if i % 100 == 99:   # Record execution stats
                run_options = tf.RunOptions(trace_level = tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step], feed_dict = feed_dict(True), 
                                        options = run_options, run_metadata = run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step %d ' % i)
                train_writer.add_summary(summary, i)
                print('Adding run metadata for', i)
            else:
                summary, _ = sess.run([merged, train_step], feed_dict = feed_dict(True))
                train_writer.add_summary(summary, i)
main()

可能对于最后一个模型 CNN 的代码,需要一些 CNN 卷积神经网络的一些知识。例如什么是卷积、池化,还需要了解 TensorFlow 中用到的相应函数,例如tf.nn.conv2d()tf.nn.max_pool(),这里不再赘述。

贴上最后一个模型的部分截图:

  • 代码部分:
「TensorFlow 1.0」 Tensorboard_第1张图片

说明:上图右侧是 CNN 网络训练的步数以及对应的结果,程序需要运行挺久时间的,CPU 占用率也很高,建议挂在晚上跑,人去休息睡觉。总之,你们可以修改那个 range(10000),请量力而为


上述代码运行完成之后,命令行中跳转到代码生成的「train」文件夹中(其和代码文件存在于同一文件夹中),然后输入 tensorboard --logdir .,等待程序反应之后,浏览器访问localhost:6006(当然你也可以自己定义端口)。如果不出意外,你会得到以下内容:

  • Scalars:

    「TensorFlow 1.0」 Tensorboard_第2张图片
  • Graphs:

    「TensorFlow 1.0」 Tensorboard_第3张图片
  • Distributions:

    「TensorFlow 1.0」 Tensorboard_第4张图片
  • Histograms:

    「TensorFlow 1.0」 Tensorboard_第5张图片

关于各个模块的作用,以及各个变量的意义,我在此就不再赘述了。

如果有读者对于 CNN 卷积神经网络有些陌生或者是遗忘,可以参考我的另外一篇文章 CNN on TensorFlow。

另外,如果读者们想在模型训练期间,做些「有趣的」事情,可以参考我的另一篇文章 Use WeChat to Monitor Your Network

你可能感兴趣的:(「TensorFlow 1.0」 Tensorboard)