- 用Python做数据分析之数据统计
学掌门
Python数据分析大数据python数据分析人工智能
接下来说说数据统计部分,这里主要介绍数据采样,标准差,协方差和相关系数的使用方法。1、数据采样Excel的数据分析功能中提供了数据抽样的功能,如下图所示。Python通过sample函数完成数据采样。2、数据抽样Sample是进行数据采样的函数,设置n的数量就可以了。函数自动返回参与的结果。1#简单的数据采样2df_inner.sample(n=3)3、简单随机采样Weights参数是采样的权重,
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- 主成分分析(PCA)例题——给定协方差矩阵
phoenix@Capricornus
PR书稿矩阵线性代数
向量xxx的相关矩阵为Rx=[0.30.10.10.10.3−0.10.1−0.10.3]{\bmR}_x=\begin{bmatrix}0.3&0.1&0.1\\0.1&0.3&-0.1\\0.1&-0.1&0.3\end{bmatrix}Rx=0.30.10.10.10.3−0.10.1−0.10.3计算输入向量的KL变换。解答Rx{\bmR}_xRx的特征值为λ0=0.1\lambda_0=
- 第十六届蓝桥杯国赛(2025)C/C++B组 蓝桥星数字 独家解析
apcipot_rain
算法c++算法开发语言
这题我中午是12点以后开始做的,只剩下1个小时了,12点50的时候完成了框架,但是细节总是实现不对,现在晚上来复盘的时候才把这题A出来了。但是,就像高考的导数你整个思路都会,你死在了求导上。。。(刚才A出来的那一刻真的快把我气哭了哈哈哈哈哈哈还不如不做出来呢)题面分析众所周知,蓝桥杯是数学杯。所以这题有没有什么数学方法来求解呢?我们不妨先观察一下10-100的数据,一共有5*9个:10121416
- 迪菲-赫尔曼密钥交换算法深度解析
网安秘谈
网络
一、背景与需求在对称加密体系中,密钥分发始终是核心安全问题。传统物理交付密钥的方式难以满足现代互联网通信需求,而迪菲-赫尔曼(Diffie-Hellman,DH)密钥交换协议通过数学方法实现了非接触式安全密钥协商,彻底改变了加密通信的格局。该算法于1976年由WhitfieldDiffie和MartinHellman提出,是首个实用的非对称密码学实现。二、数学基础2.1离散对数问题设p为质数,g是
- PCL 计算点云OBB包围盒——PCA主成分分析法
点云侠'
点云学习算法c++开发语言计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景1.4注意事项二、关键函数2.1头文件2.2读取点云2.3计算点云质心和协方差矩阵2.4协方差矩阵分解求特征值和特征向量2.5校正主方向2.6将输入点云转换至原点2.7计算包围盒2.8构建四元数和位移向量2.9结果可视化三、完整代码四、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,永久免费,可放
- python计算化学浓度_理论与计算化学 - 计算模拟 - 程序代码 - 小木虫论坛-学术科研互动平台...
weixin_39647458
python计算化学浓度
计算化学(computationalchemistry)是理论化学的一个分支。计算化学的主要目标是利用有效的数学近似以及电脑程序计算分子的性质(例如总能量,偶极矩,四极矩,振动频率,反应活性等)并用以解释一些具体的化学问题。计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。理论化学泛指采用数学方法来表述化学问题,而计算化学作为理论化学的一个分支,常特指那些可以用电脑程序实现的数学方法。计算
- Python量化投资入门教程:从零构建你的第一个交易策略
聪明的一休哥哥
程序员理财python开发语言量化交易
1、什么是量化投资?量化投资(QuantitativeInvestment),即通过数量化方式及计算机程序化发出买卖指令,以获取超额收益或特定风险收益比为目的的交易方式。它借助现代统计学、数学方法,利用计算机技术从海量历史数据中寻找能带来超额收益的“大概率”策略和规律,并纪律严明地按照这些策略构建的数量化模型来执行投资理念。其核心优势在于:纪律性:避免投资者在市场波动中因情绪波动做出错误决策。效率
- 机器学习——主成分分析 PCA
Nil0_
机器学习
目录简介一、基本原理1.数据变换2.协方差矩阵3.特征值和特征向量实施步骤应用选择主成分的数量二、代码实现优缺点分析优点缺点总结简介主成分分析(PCA)是机器学习领域中的一种重要算法,主要应用于数据的降维和特征提取。PCA的目的是通过保留数据集中的主要信息,将高维数据集转换为低维数据集,从而简化模型训练和提高模型性能。一、基本原理1.数据变换PCA通过线性变换将原始数据映射到新的特征空间,这个变换
- 谈谈对《加密算法》的理解
寒士obj
Javajava安全
文章目录一、什么是加密算法?二、常见的加密算法有哪些?2.1对称加密2.2非对称加密2.3哈希算法三、加密算法代码展示3.1MD5加密3.2秘钥加密3.3AES加密解密四、加密算法的使用场景一、什么是加密算法?加密算法是一种通过数学方法将明文转换为密文的过程,其目的是防止未经授权的访问。它的核心特征有:机密性、完整性、认证性和不可否认性。二、常见的加密算法有哪些?加密算法主要分为以下两类:2.1对
- 数学建模期末速成 聚类分析与判别分析
HCl+NaOH=NaCl+H_2O
数学建模
聚类分析是在不知道有多少类别的前提下,建立某种规则对样本或变量进行分类。判别分析是已知类别,在已知训练样本的前提下,利用训练样本得到判别函数,然后对未知类别的测试样本判别其类别。聚类分析根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行分类。常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。对样本进行分类称为Q型聚类分析,
- 基于Matlab实现LDA算法
Matlab仿真实验室
Matlab仿真实验1000例matlab算法开发语言
线性判别分析(LinearDiscriminantAnalysis,LDA)是一种经典的统计方法,常用于特征降维和分类问题。在机器学习领域,一、LDA基本原理LDA的目标是寻找一个投影空间,使得类间距离最大化,同时保持类内距离最小化。在这个新空间中,不同类别的样本能够得到更好的分离。LDA假设样本服从多变量正态分布,并且各类别的协方差矩阵相同。通过解决特定的优化问题,我们可以找到最优的投影向量。二
- 小波变换+Transformer:融合创新驱动多领域进步
YunTM
人工智能深度学习论文阅读transformer
2024发论文&模型涨点之——小波变换+Transformer小波变换(WaveletTransform,WT)和Transformer是两种强大的工具,它们在各自的领域内有着广泛的应用。小波变换是一种数学方法,用于分析信号的时间-频率特性,而Transformer则是一种深度学习模型,主要用于处理序列数据,特别是在自然语言处理(NLP)领域。将两者结合起来,可以创造出一些创新的应用。将小波变换与
- CNBC专访CertiK联创顾荣辉:从形式化验证到AI赋能,持续拓展Web3.0信任边界
CertiK
观点web3形式化验证AI
近日,CertiK联合创始人、哥伦比亚大学教授顾荣辉接受全球知名财经媒体CNBC阿拉伯频道专访,围绕形式化验证的行业应用、AI在区块链安全中的角色,以及新兴技术风险等议题,分享了其对Web3.0安全未来的深刻洞察。顾荣辉表示,形式化验证是构建区块链安全基础的关键,其作用在于以数学方法验证代码行为是否符合预期逻辑。这种方法比传统审计工具更为严谨,也更具挑战性。他曾多次强调,区块链的本质不只是技术创新
- 从逻辑学视角严谨证明数据加密的数学方法与实践
小胡说技书
#数据安全技术数据安全安全Python网络安全密码学信息论加密
文章目录一、加密数据的数学指纹:信息论基础1.1加密检测的核心原理1.2香农熵:量化信息的不确定性二、统计检验方法:从随机性到加密性2.1卡方检验的数学原理2.2游程检验与序列相关性2.3NIST统计测试套件三、加密算法的特征识别3.1对称加密的模式识别3.2非对称加密的识别3.3哈希函数输出的识别四、信息论的理论边界4.1完美保密性与一次性密码本4.2Kolmogorov复杂度与加密4.3唯一解
- 深度学习与传统算法在人脸识别领域的演进:从Eigenfaces到ArcFace
uncle_ll
人脸深度学习人脸人脸识别
一、传统人脸识别方法的发展与局限1.1Eigenfaces:主成分分析的经典实践算法原理Eigenfaces是基于主成分分析(PCA)的里程碑式方法。其核心思想是将人脸图像视为高维向量,通过协方差矩阵计算特征向量(即特征脸),将原始数据投影到由前k个最大特征值对应的特征向量张成的低维子空间。在FERET数据集上,Eigenfaces曾达到85%的识别准确率,证明了线性降维的有效性。优劣势对比✅优势
- 【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,附代码下载链接
MATLAB卡尔曼
卡尔曼专题免费专栏matlab开发语言
本文所述代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录简介运行结果MATLAB源代码简介代码分为以下几个部分:初始化部分清理工作区环境,设置随机数种子,定义时间序列。定义过程噪声协方差矩阵Q和观测噪声协方差矩阵R。初始化真实状态矩阵X、观测
- safeEval 安全动态执行指南
王小玗
javscripthtmlcssjavascript青少年编程开发语言安全自动化
safeEval安全动态执行指南一、基础用法1.1初始化环境import{SafeEval}from'safe-eval-engine';//最小化上下文暴露constsafeEval=newSafeEval({allowedAPIs:{Math:['sqrt','pow','abs'],//仅允许特定数学方法Date:[],//完全禁用Datecustom:{//自定义安全方法sanitize:
- 3.4 数字特征
x峰峰
#数学概率论
本章系统讲解随机变量的数字特征理论,涵盖期望、方差、协方差与相关系数的核心计算与性质。以下从四个核心考点系统梳理知识体系:考点一:期望(数学期望)1.离散型随机变量的数学期望一维情形:E(X)=∑i=1∞xipiE(X)=\sum_{i=1}^\inftyx_ip_iE(X)=i=1∑∞xipi一维函数:E[g(X)]=∑i=1∞g(xi)piE[g(X)]=\sum_{i=1}^\inftyg(
- 点云法向量和平面方程
Satisfying
数学基础算法人工智能智慧城市数学建模
文章目录一、平面方程表示法1.1一般方程1.2点法式1.3一般方程的系数构成法向量1.4结论二、拉格朗日乘数法三、法向量计算3.1问题背景3.2推导过程3.2.1证明法向量是一个特征向量3.2.2证明法向量是最小特征值对应的特征向量四、已知三点求平面方程表达式五、已知协方差矩阵计算法向量一、平面方程表示法1.1一般方程Ax+By+Cz+D=0Ax+By+Cz+D=0Ax+By+Cz+D=01.2点
- Python-相关系数矩阵计算-Python.corr()
阿羊是个凸头猿
python矩阵算法
背景知识相关系数矩阵衡量的是自变量之间的相关程度,当相关系数为1时表示自变量之间完全正相关,当相关系数为-1时表示自变量之间完全负相关。衡量方法Pearson皮尔逊相关系数衡量的是两个变量之间的线性关系,即线性关联度,在数学上定义为两个变量之间的协方差和标准差之积的商。r=cov(X,Y)σXσYr=\frac{\text{cov}(X,Y)}{\sigma_X\sigma_Y}r=σXσYcov
- 【神经网络与深度学习】VAE 中的先验分布指的是什么
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
VAE中的先验分布是什么?在变分自编码器(VAE)中,先验分布指的是对潜在空间中随机变量的概率分布假设。通常情况下,VAE设定潜在变量服从标准正态分布(N(0,I)),其中(0)代表均值为零的向量,(I)为单位协方差矩阵。选择标准正态分布作为先验分布的原因主要有以下几点:数学上的便利性:标准正态分布具有良好的数学性质,计算和推导更加简洁,便于模型的优化和训练。结构化的潜在空间:这种假设能够促使模型
- 多元统计分析样本均值,协方差
star_and_sun
多元统计
x=read.table(“C:\Users\dell\Desktop\one.csv”,sep=’,’,header=F)#读取#xbar=colMeans(x)#样本均值向量#y=cov(x)#样本协方差#m=(n-1)y#li离差#n=cor(x)#相关矩阵#u=c(7,5,4,8)T2=19t(xbar-u)%%solve(n)%%(xbar-u)#统计量#16/(19*4)*T2#F#q
- 卡尔曼滤波解释及示例
具身小站
算法卡尔曼滤波EKFUKFAKF
卡尔曼滤波的本质是用数学方法平衡预测与观测的可信度,通过不断迭代逼近真实状态。其高效性和鲁棒性,通常在导航定位中,需要融合GPS、加速度计、陀螺仪、激光雷达或摄像头数据,来提高位置精度。简单讲,卡尔曼滤波就是通过预测-更新循环,动态权衡模型预测与传感器测量,在噪声环境中实现最优估计,其数学本质是贝叶斯滤波在高斯噪声下的解析解。1.原理概述卡尔曼滤波的核心是递归地结合预测与测量,在存在噪声的系统中实
- 【数据融合】基于拓展卡尔曼滤波实现雷达与红外的异步融合附matlab代码
Matlab建模攻城师
数据融合算法matlab数据融合
一、问题分析与技术难点1.传感器特性对比传感器测量维度优势局限性噪声模型雷达距离$r$、方位角$\theta$、速度$v$测距精度高、全天候工作角度分辨率低、易受多径干扰高斯噪声,协方差矩阵$R_r=\text{diag}(\sigma_r^2,\sigma_\theta^2,\sigma_v^2)$红外方位角$\theta$、俯仰角$\phi$、温度$T$测角精度高、隐蔽性强受天气影响大、无测距
- 2025年Java和python调用AI的API使用方法及AI大模型原理
狒狒的代码王国
pythonjava开发语言
一、AI算法的核心概念与原理AI算法,即人工智能算法,是让计算机模拟人类智能行为、从数据中学习并进行决策的一系列数学方法与规则集合。其核心目标是赋予机器从经验中学习、对未知情况做出合理判断与决策的能力。机器学习是AI算法的重要基础领域,它使计算机能基于数据进行学习并改进性能。监督学习作为机器学习的关键分支,依靠已标记数据进行模型训练。例如在图像分类任务中,为算法提供大量已标注好类别(如“猫”“狗”
- 【Python机器学习】零基础掌握OAS协方差估计
Mr数据杨
Python机器学习python机器学习开发语言
如何更准确地估算股市投资组合的风险?在股市投资中,风险估算是至关重要的。传统的协方差矩阵在某些情况下可能并不准确,特别是在数据样本量较小的情况下。那么,有没有更好的方法来进行风险估算呢?解决这一问题的一种算法就是sklearn.covariance.OAS(OracleApproximatingShrinkage)。这个算法能更准确地估算协方差矩阵,特别是在数据样本量较少的情况下。假设有一个投资者
- 机器学习(8)——主成分分析
追逐☞
机器学习机器学习信息可视化人工智能
文章目录1.主成分分析介绍2.核心思想3.数学基础4.算法步骤4.1.数据标准化:4.2.计算协方差矩阵:4.3.特征分解:4.4.选择主成分:4.5降维:5.关键参数6.优缺点7.改进变种8.应用场景9.Python示例10.数学推导(最大化方差)11.注意事项12.总结1.主成分分析介绍主成分分析(PCA,PrincipalComponentAnalysis)是一种常用的降维技术,旨在通过线性
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息