1.Generate Parentheses

Given *n* pairs of parentheses, write a function to generate all 
combinations of well-formed parentheses.
For example, given *n* = 3, a solution set is:
[ "((()))", "(()())", "(())()", "()(())", "()()()"]

题目思路:
  ①不难发现,n为0的时候输出是空,而n = 1的时候,输出“()”
  ②当n > 1的时候,要使得整个括号字符串可以配对,那么与第一个配对的右括号把n - 1对括号分成了一个 i (0 <= i < n)对已配对的括号和 n - 1 - i对已配对的括号。那么把所有的右括号划分的情况全部列出来就可以了。由于这里的时间复杂度比较复杂,就不作分析了。
根据上述可以得到:
f(n) = ∑( '(' + f(i) +')' + f(n - 1 - i) )

class Solution(object):
    """
      :type n: int
      :rtype: List[str]
      """
    def generateParenthesis(self, n):
        result = []
        def func(left,right,s):
            if  left < right :
                return
            if (left+right == n*2):
                if (left == right):
                    result.append(s)
                return
            func(left,right+1,s+')')
            func(left+1,right,s+'(')
        func(1,0,'(')
        return  result

递归解法,左括号的个数比右括号多

class Solution(object):
    """
      :type n: int
      :rtype: List[str]
      """
    def generateParenthesis(self, n):
        result = []
        def func(left,right,s):
            if  left < right :
                return
            if (left+right == n*2):
                if (left == right):
                    result.append(s)
                return
            func(left,right+1,s+')')
            func(left+1,right,s+'(')
        func(1,0,'(')
        return  result

你可能感兴趣的:(1.Generate Parentheses)