- C++: Dtrees:load(constg String& filepath, const String& nodeName)中nodeName参数含义
湫兮之风
c++c++开发语言算法
1.nodeName的作用当你保存模型时,整个决策树会被序列化到一个XML或YAML文件中。nodeName是加载时指定的一个逻辑路径,用于从文件中找到某个节点或子结构,而不是存储在文件中的字段。如果你不指定nodeName,OpenCV默认会尝试加载文件中根节点对应的模型。2.默认的行为如果你不指定nodeName,通常会加载文件的根节点:Ptrtree=cv::ml::DTrees::load
- python graphviz 中文乱码
晓梦OvO
python决策树
问题:在调用graphviz库进行决策树绘图的时候,即使我们设置了fontname='SimHei',encoding='utf-8',我们同样会发现出现了中文乱码的情况fromgraphvizimportDigraphdot=Digraph('决策树',encoding='utf-8')dot.attr(fontname='SimHei',encoding='utf-8')#改为系统中的中文字体
- 微信小程序使用蓝牙连接硬件保姆级教程
技术需要沉淀gogo
原生微信小程序微信小程序小程序
一、蓝牙官方api文档设备/蓝牙-通用/wx.startBluetoothDevicesDiscovery(qq.com)二、蓝牙重要参数介绍以及自我理解参数1deviceid蓝牙设备的id这个参数是蓝牙设备的唯一id2uuid服务的id这个是通过deviceid获取到的这个设备服务的uuid3characteristic特性值这个是通过deviceid、uuid获取到的特性值重点:辅助理解这几个
- 【机器学习:二十六、决策树】
KeyPan
机器学习机器学习决策树人工智能算法深度学习数据挖掘
1.决策树概述决策树是一种基于树状结构的监督学习算法,既可以用于分类任务,也可以用于回归任务。其主要通过递归地将数据划分为子集,从而生成一个具有条件结构的树模型。核心概念节点(Node):每个节点表示一个特定的决策条件。根节点(RootNode):树的起点,包含所有样本。分支(Branch):每个分支代表一个条件划分的结果。叶节点(LeafNode):终止节点,表示最终的决策结果。优点直观可解释:
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 【机器学习:二十七、决策树集合】
KeyPan
机器学习机器学习决策树人工智能数据挖掘深度学习算法分类
1.决策树集合的概述决策树集合是一种基于多个决策树模型集成的机器学习方法,通过组合多个弱学习器(决策树)形成一个强学习器,显著提升预测性能和泛化能力。核心思想集成学习的核心是通过结合多个模型的优点,降低单个模型的偏差与方差,提高整体的准确性和鲁棒性。决策树集合利用多棵树的组合,减少了单棵树可能出现的过拟合或对噪声的敏感性。主要优势性能提升:在分类和回归任务中通常表现优于单独的决策树。稳定性更强:对
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 构建决策树对于流失用户进行分类
努力学习中的阿达
最近被分配到商业分析组配合商业分析师对流失掉的客户进行研究。我最先接到的任务是根据客服部门记录的客户的流失原因,对于这些客户的流失原因做分类。商业分析师给我提供了23个类别,要求我把客户都分到这些类中。最开始我企图通过建立关键词规则,比如包含某些单词或者不包含某些单词,但是实际上发现分类的结果很差,规则首先不完备,并且彼此还可能冲突,分类的结果当然就很差。于是我就想到可以利用文本挖掘的方法,对于客
- 《鸿蒙Next微内核:解锁人工智能决策树并行计算的加速密码》
人工智能深度学习算法
在当今人工智能飞速发展的时代,提升运算速度是推动其进步的关键。鸿蒙Next以其独特的微内核特性,为设计决策树的并行计算框架提供了新的思路和契机。鸿蒙Next微内核特性概述鸿蒙Next的微内核架构将核心功能模块化,仅保留进程管理、内存管理和通信机制等基础功能在内核中,文件系统、网络协议等都作为独立模块在用户空间运行。这种架构使内核精简、稳定且安全,模块间低耦合也让系统可扩展性和维护性更强,能根据不同
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- Livox_Mid360+IMU仿真搭建
夜雨拾年
无人机
前言本文是对在gazebo里搭建一个livoxmid360+惯导仿真平台测试FAST-LIO2的实现,此博文中存在部分需要修改代码的地方,因此在本文中做出更详细的说明。资源包安装注:由于livox点云的格式是CustomMsg,而rviz中主要使用PointCloud和PointCloud2,转换不太方便,因此不使用官方提供的软件包,使用他人修改后的软件包。但此软件包开发时间较早,缺少mid360
- 基于XTDrone的ZD550+Mid360实现
夜雨拾年
无人机
前言本文是对ZD550搭载Mid360激光雷达Gazebo仿真平台搭建记录的实现文件导入先下载提供的文件链接:https://pan.baidu.com/s/1reqGCcQOj1T_tGBY3EZWpw?pwd=328c提取码:328c将文件夹ZD550_Mid360中的5个文件夹都添加到PX4_Firmware/Tools/sitl_gazebo/models目录下,其中models目录下可能
- XTDrone+ZD550+Livox_Mid360+IMU仿真实现
夜雨拾年
无人机
简介本文是前两篇博客Livox_Mid360+IMU仿真搭建、基于XTDrone的ZD550+Mid360实现的结合,将ZD550与Livox_Mid360+IMU结合,从原有的xacro文件转为sdf文件,更适合gazebo仿真的实现。最终效果DIY若想实现对激光雷达参数的修改,可参考以下部分标签内部的元素详细定义了Gazebo中使用的雷达传感器的扫描特性和性能。这些设置影响雷达模拟的准确性和效
- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- 决策树基础概论
Hello.Reader
算法算法决策树
1.概述在机器学习领域,决策树(DecisionTree)是一种高度直观且广泛应用的算法。它通过一系列简单的是/否问题,将复杂的决策过程分解为一棵树状结构,使得分类或回归问题的解决过程直观明了。决策树的最大特点在于可解释性强,每个决策节点都代表对特定特征的判断,最终根据这些判断得出结论。决策树适用于多种任务,例如:垃圾邮件分类、病症诊断、股票价格预测等。不仅如此,它还可以处理连续变量和离散变量,并
- Thinkphp中where()条件的使用
2401_84875852
程序员服务器java网络
|notin|notin|$map[‘id’]=array(‘notin’,‘1,5,8’);|idnotin(1,5,8)||and(默认)|and|$map[‘id’]=array(array(‘gt’,1),array(‘lt’,10));|(id>1)AND(id3)OR(idwhere(User->where(User−>where(map)->select();相当于sql语句:nam
- 在TCGA上下载数据并且进行处理
Red Red
生信小技巧r语言数据库
浏览器搜索TCGAGDC进入网站在TCGA数据库主页选择“Repository”模式根据所需要的选项在侧边栏选择数据清空购物车!!第一次登陆可忽略将刚刚选择好的数据加入购物车,并且在购物车里下载Metadata和Cart数据,下载到同一个文件夹下。使用R语言脚本对数据进行处理,将其提取为genesymbol和样本的数据,推荐看一下该博主处理数据!!真的非常详细!他R语言脚本在这个链接里
- 人工智能与机器学习原理精解【18】
叶绿先锋
基础数学与应用数学人工智能机器学习
文章目录决策树基础决策树的定义决策树的计算决策树的例子决策树的例题决策树算法一、决策树的算法过程二、决策树的性质Julia中实现框架使用`DecisionTree.jl`使用`MLJ.jl`Julia包的教程一、了解Julia包生态系统二、安装Julia包1.打开JuliaREPL2.使用Pkg包管理器三、使用Julia包四、查找和了解Julia包1.Julia官方文档2.JuliaHub3.Gi
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- recover device type disk copy of database 还不会用!!!!
jnrjian
数据库oracle
ImplementingaDualBackupStrategywithBackupstoDiskandRecoveryAppliance(DocID2154461.1)RMAN-HowtoimplementDualBackupstrategy(DocID3003000.1)ZeroDataLossRecoveryApplianceSoftware-Version12.1.0.1.0andlater
- 【人工智能】大话什么是神经网络
路上阳光
什么是人工智能?通俗来讲,就是让机器能像人一样思考。这个无需解释太多,因为通过各种科幻电影我们已经对人工智能很熟悉了。大家现在感兴趣的应该是——如何实现人工智能?从1956年夏季首次提出“人工智能”这一术语开始,科学家们尝试了各种方法来实现它。这些方法包括专家系统,决策树、归纳逻辑、聚类等等,但这些都是假智能。直到人工神经网络技术的出现,才让机器拥有了“真智能”。为什么说之前的方法都是假智能呢?因
- 瑞吉外卖——购物车(移动端)
小杰不想秃头
瑞吉外卖项目javaajax开发语言
需求分析移动端用户可以将菜品或套餐加入购物车。对于菜品来说,如果添加了菜品口味信息,则需要选择规格后才能加入购物车;对于套餐来说,可以直接点击加号将当前套餐加入购物车。在购物车中可以修改套餐或菜品的数量,也可以清空购物车。数据模型需要操作shopping_cart表。代码开发前后端交互过程:点击加入购物车或者加号按钮,页面发送ajax请求,将菜品或套餐加入购物车。点击购物车按钮,页面发送ajax请
- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- 每天一个数据分析题(五百一十四)- 决策树算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析决策树
决策树由节点和边两种元素组成的结构,决策树中不包含一下哪种结点?A.根结点(rootnode)B.内部结点(internalnode)C.外部结点(externalnode)D.叶结点(leafnode)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练
- 力扣-N皇后问题
坚持拒绝熬夜
leetcode算法职场和发展
.-力扣(LeetCode)开始的思路由于n=4情况太多我们先画一下n=3的决策树可以知道皇后不能在同一行,因为我的思路是每一行每一行的填写皇后,所以不考虑行的皇后会重叠,主要考虑列的皇后会不会重叠,还有斜线的列皇后可以直接用一个数组col来标记一列中有皇后标记为true而斜线的需要一点数学功底如图可以转化成截距相等,当斜线斜率为1时,可能会有负数的情况,两边同时加上n,因为我想使用下标来标记截距
- AI模型:追求全能还是专精?
Lill_bin
杂谈人工智能分布式zookeeper机器学习游戏
AI模型简介人工智能(AI)模型是人工智能系统的核心,它们是经过训练的算法,能够执行特定的任务,如图像识别、自然语言处理、游戏玩法、预测分析等。AI模型的类型很多,可以根据其功能和应用场景进行分类。常见的AI模型类型包括:监督学习模型:这些模型通过训练数据集学习,数据集中包含了输入和对应的输出标签。例子包括决策树、支持向量机(SVM)、神经网络等。无监督学习模型:这些模型处理没有标签的数据,目的是
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理