- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- 第一次在CSDN 使用Markdown编辑页,就看到了完美的语法,在此处,我记录一下
撰卢
编辑器笔记
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Mark
- 试题公式ocr识别数据集
试题公式ocr识别数据集insurance_formula_latexhttps://github.com/LeeXYZABC/insurance_formula_latex.gitreference---
- jmeter的时间戳函数使用
flower_1111
代码jmeterjmeter
原文:https://blog.csdn.net/jocleyn/article/details/834144331、__time:获取时间戳、格式化时间(1)、${__time(yyyy-MM-ddHH:mm:ss:SSS,time)}:格式化生成时间格式2018-10-2611:08:23:635(2)、${__time(,)}:默认该公式精确到毫秒级别,13位数1527822855323(3
- Python 实战人工智能数学基础:推荐系统应用
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.背景介绍2.核心概念与联系2.1用户画像2.2相似性计算2.2.1基于物品的相似度2.2.2基于用户的相似度2.3协同过滤算法2.3.1基于用户的协同过滤算法2.3.2基于物品的协同过滤算法2.3.3基于上下文的协同过滤算法3.核心算法原理和具体操作步骤以及数学模型公式详细讲解3.1基于用户的协同过滤算法3.2基于物品的协同过滤算法3.3混合协同过滤算法3.
- word中viso/math type公式比文字大
主要是mathtype中字号和word中字号是分别设置的,需要单独点开复制之后的公式,进入编辑状态,调整大小,让mathtype所对应的pt磅值和word中所对应的字号一样。字号对应关系如何调mathtype大小viso同理
- 强化学习之 DQN、Double DQN、PPO
JNU freshman
强化学习强化学习
文章目录通俗理解DQNDoubleDQNPPO结合公式理解通俗理解DQN一个简单的比喻和分步解释来理解DQN(DeepQ-Network,深度Q网络),就像教小朋友学打游戏一样:先理解基础概念:Q学习(Q-Learning)想象你在教一只小狗玩电子游戏(比如打砖块)。小狗每做一个动作(比如“向左移动”或“发射球”),游戏会给出一个奖励(比如得分增加)或惩罚(比如球掉了)。小狗的目标是通过不断尝试,
- 李群与李代数2:李代数求导和李群扰动模型
龙焰智能
SLAM数学基础自动驾驶高等数学李群李代数BCH公式微分模型扰动模型相似变换群
李群与李代数2:李代数求导和李群扰动模型1.整体误差最小化引出求导问题2.BCH公式与近似形式2.1BCH公式2.2BCH线性近似2.3BCH近似的意义3.微分模型——李代数求导4.扰动模型求导(左乘)4.1SO(3)上的扰动模型求导4.2SE(3)上的扰动模型求导4.3伴随性质5.相似变换群相关5.1相似变换群Sim(3)Sim(3)Sim(3)5.2李代数sim(3)\mathfrak{sim
- 动态时间规整(Dynamic Time Warping,DTW)补充案例
EmorZhong
python人工智能机器学习算法动态规划
DTW的边界条件是确保累积距离矩阵计算“有起点、有规则”的基础,它规定了矩阵中第一行和第一列的累积距离如何计算(因为这两行/列是路径的“起点边缘”,没有“上一步”的全部选择)。下面结合具体场景和例子展开说明:为什么需要边界条件?累积距离矩阵(D[i][j])的核心递归公式是:[D[i][j]=\text{dist}[i][j]+\min\left(D[i-1][j],\D[i][j-1],\D[i
- 突破传统:Dell R730服务器RAID 5配置与智能监控全解析
芯作者
D2:ubuntu服务器linuxubuntu
在现代数据中心运维中,合理的存储配置是保障业务连续性的基石。今天,我们将深入探索DellPowerEdgeR730服务器的RAID5配置技巧,并结合热备盘策略、自动化监控脚本以及性能调优方案,为您呈现一份别开生面的技术指南。一、为什么RAID5+热备盘是企业级存储的黄金组合?RAID5通过分布式奇偶校验实现数据冗余,允许单块硬盘故障时不丢失数据。其存储效率公式为:Efficiency=\frac{
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 无人机飞控系统中气压计软件驱动与应用入门指南
bother3000
无人机硬件嵌入式开发无人机无人机#传感器stm32无人机嵌入式硬件PX4航空仪表气压计可信计算技术
一、气压计在飞控系统中的核心作用1.1气压计的基本原理气压计(Barometer)基于压阻效应或电容效应工作,通过测量空气压力计算飞行高度。其基本公式为:其中:1.2在飞控系统中的关键应用应用场景具体作用高度测量提供绝对高度数据,精度通常为±0.5米(标准大气压下)定高飞行作为PID控制器的高度输入,实现稳定悬停气压趋势分析通过气压变化率判断上升/下降趋势,辅助姿态控制高度融合滤波与GPS高度、超
- 语音信号基础篇1-预加重(Pre-emphasis)
沐黎~
信号与系统语音识别人工智能
预加重就是对语音信号的高频进行补偿,语音信号90%能量集中在有效带宽低频分量上,高频分量频谱(一般我们用其幅度谱,通俗将就是频谱的模长或者绝对值长度)较小,我们让它变大一定,占比多,增强其高频分量。预加重原理也非常简单,其时域表达式非常简单,如下式子:公式中:一般取0.97时域看着就简单后一个减去前一个,看不出有什么规律,我们对其进行z变换,可得:合并同类项,可得:自变量为z,我们画出z变化后的频
- 数据结构——1.数据结构和算法
爱看烟花的码农
数据结构数据结构
第一部分:笔试核心概念(理论知识)一、数据结构绪论什么是数据结构?数据结构不仅仅是数据,而是研究如何组织数据(结构化信息)的方法,目的是为了能够高效地处理这些数据。一个经典的公式是:算法+数据结构=程序。这表明,好的程序离不开高效的数据组织方式和处理算法。基本概念与术语数据(Data):是计算机可以识别、存储和处理的符号总称,是程序处理的“原料”。例如,一张图片、一段文字、股票行情、心电图数据等。
- 12 | 走向元宇宙:数字化工作与生活
_Rye_
元宇宙
专栏快接近尾声了。在之前的课程里,我们一直在用一个框架来概括元宇宙,那就是:元宇宙=立体互联网+价值互联网。这个公式可以帮助我们从宏观角度更好地理解元宇宙。当我们回归工作和生活,用更加个人化的角度来观察元宇宙时,我们可以换用另外一个等式:元宇宙=实体空间+数字空间。通过这个等式,我们可以看到,元宇宙将带给我们线上线下全面融合的数字生活。这一讲的讨论分成两个部分。首先,我们来看看自己周围的数字化发展
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 如何用python处理excel的数据(极值标准化)?
bug菌¹
全栈Bug调优(实战版)python极值标准化数据excel
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!全文目录:问题描述解决方案极值标准化公式:步骤:代码示例:代码说明:示例文件:额外功能:安装依赖:文末福利,等你来拿!✨️WhoamI?问题描述如何用python处理ex
- 掌握 Spring Data Redis,提升后端开发效率
掌握SpringDataRedis,提升后端开发效率关键词:SpringDataRedis、后端开发、缓存、数据持久化、效率提升摘要:本文旨在深入探讨SpringDataRedis这一强大的工具,帮助后端开发者更好地掌握它以提升开发效率。首先介绍SpringDataRedis的背景知识,包括其目的、适用读者等。接着详细阐述核心概念与联系,分析核心算法原理并给出具体操作步骤,通过数学模型和公式加深理
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- Rust后端框架:助力快速开发
大厂资深架构师
SpringBoot开发实战rust网络开发语言ai
Rust后端框架:助力快速开发关键词:Rust、后端框架、快速开发、高性能、内存安全摘要:本文深入探讨了Rust后端框架在快速开发中的重要作用。首先介绍了Rust语言的背景及其在后端开发领域的崛起原因,接着详细阐述了常见Rust后端框架的核心概念、架构和工作原理,通过Python示例类比讲解了核心算法原理和具体操作步骤,还给出了相关的数学模型和公式。在项目实战部分,展示了如何搭建开发环境、实现源代
- 后端领域的自然语言处理技术应用
大厂资深架构师
SpringBoot开发实战自然语言处理easyui人工智能ai
后端领域的自然语言处理技术应用关键词:后端领域、自然语言处理、技术应用、算法原理、实际案例摘要:本文聚焦于后端领域中自然语言处理技术的应用。首先介绍了相关背景,包括目的范围、预期读者等。接着阐述核心概念与联系,通过文本示意图和Mermaid流程图展示其原理和架构。详细讲解了核心算法原理并给出Python源代码示例,同时介绍了数学模型和公式。通过项目实战,展示代码实际案例并进行详细解释。分析了自然语
- 题解:P13017 [GESP202506 七级] 线图
YLCHUP
刷题之路算法图论深度优先数学建模c++数据结构笔记
首先明白定义:线图L(G)L(G)L(G)的顶点对应原图GGG的边,当且仅当原图中的两条边有公共顶点时,对应的线图顶点之间有一条边。不难想到,对于原图中的每个顶点vvv,其度数d(v)d(v)d(v)对应的边集可以形成(d(v)2)\binom{d(v)}{2}(2d(v))对相邻边。每对相邻边在线图中会产生一条边。用公式表示就是这样的(设G=(V,E)G=(V,E)G=(V,E)):∣EL(G)
- 四、Actor-Critic Methods
沈夢昂志
DRL深度强化学习python深度学习
由于在看DRL论文中,很多公式都很难理解。因此最近在学习DRL的基本内容。再此说明,非常推荐B站“王树森老师的DRL强化学习”本文的图表及内容,都是基于王老师课程的后自行理解整理出的内容。目录A.书接上回1、Reinforce算法B.State-ValueFunctionC.PolicyNetWork(Actor)D.ActionValueNetwork(Critic)E.TraintheNeur
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- BabelDOC入门手册一点就通
AhriProGramming
算法ocrpython
BabelDOC入门手册一点就通【#BubbleDOC震撼发布!科研党的终极翻译神器,PDF翻译从此告别排版灾难!】你是否经历过翻译PDF时公式错位、图表乱飞、版式崩坏的绝望?传统翻译工具的时代结束了!#BubbleDOC横空出世,凭借三大革命性突破,成为全球科研、金融、法律从业者的新宠✨核心亮点1️⃣无损解析:精准提取PDF内嵌公式、图表、脚注,误差<0.5mm,翻译后与原版像素级对齐;2️⃣智
- 大模型系列——RAG-Anything:开启多模态 RAG 的新纪元,让文档“活”起来!
猫猫姐
大模型人工智能大模型
RAG-Anything:开启多模态RAG的新纪元,让文档“活”起来!在AI技术日新月异的今天,一个名为RAG-Anything的开源项目正悄然掀起多模态文档处理的革命。它不再局限于纯文本,而是能“读懂”图像、表格、公式,甚至将它们关联起来!这究竟是怎样一位“全能型智能助手”?让我们一同揭开它的神秘面纱。项目简介:打破模态壁垒的智能引擎RAG-Anything是一款综合性多模态文档处理RAG(检索
- Axure RP 8.0函数大全 Axure函数手册用法及说明
journey_IT
axure
Axure函数的基本语法在axure交互设计时,函数可以用在条件公式和需要赋值的地方,其基本语法是用双方括号包含,变量值和函数用英文句号连接。例如:[[LVAR.Width]]表示变量LVAR的宽度。[[This.Width]]当前元件的宽度元件函数This用途:获取当前元件对象。当前元件是指当前添加交互动作的元件。Target用途:获取目标元件对象。目标元件是指当前交互动作控制的元件。x用途:获
- CKEditor中粘贴复杂公式的最佳实践是什么?
M_Snow
umeditor粘贴wordueditor粘贴wordueditor复制wordueditor上传word图片ueditor导入wordueditor导入pdfueditor导入ppt
要求:开源,免费,技术支持编辑器:ckeditor前端:vue2,vue3.vue-cli后端:asp,java,jsp,springboot,php,asp.net,.netcore功能:导入Word,导入Excel,导入PPT(PowerPoint),导入PDF,复制粘贴word,导入微信公众号内容,web截屏平台:Windows,macOS,Linux,RedHat,Ubuntu,CentO
- Python 领域 vllm 安装与环境配置全攻略
Python编程之道
Python编程之道python开发语言ai
Python领域vllm安装与环境配置全攻略关键词:Python、vllm、安装、环境配置、深度学习摘要:本文围绕Python领域中vllm的安装与环境配置展开,全面且深入地介绍了vllm的相关知识。首先阐述了背景信息,包括目的范围、预期读者、文档结构和术语表。接着详细讲解了vllm的核心概念与联系,分析其核心算法原理并给出具体操作步骤,还引入了相关数学模型和公式进行说明。通过项目实战,提供代码实
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要