自然语言处理N天-Day1102从0搭建一个RNN神经网络作诗

自然语言处理N天-Day1102从0搭建一个RNN神经网络作诗_第1张图片
新建 Microsoft PowerPoint 演示文稿 (2).jpg

说明:本文依据Github上面的一个2000星项目完成。项目作者jinfagang,项目地址,在这里感谢那些开源的程序员,让我们学到更多。
我会尽量将项目进行拆解,希望对大家的学习有所帮助吧。

第十一课 使用RNN生成古诗

1.项目架构

和之前的项目类似,该项目主要包括了三个部分:数据包、数据处理和模型构建、模型训练和结果生成。其中data文件夹放置的是诗词数据,包含有古诗文数据集,每行就代表一首诗,每首诗由标题和内容两部分组成,中间以冒号分割。

2.数据预处理和模型构建

代码位于poems.py文件的process_peoms方法,在里面我做了标注。
主要实现

  • 清洗数据,筛选出符合RNN训练标准的诗词;
  • 生成诗文向量、字向量、字频率
import collections
import numpy as np

start_token = 'B'
end_token = 'E'

def process_poems(file_name):
    # poems -> list of numbers
    poems = []
    with open(file_name, "r", encoding='utf-8') as f:
        for line in f.readlines():
            try:
                # 将题目和诗文内容分割
                title, content = line.strip().split(':')
                # 移除空格
                content = content.replace(' ', '')
                # 对诗文进行过滤(含有特殊字符和过短/过长的诗文)过短或过长会影响到RNN模型的训练
                if '_' in content or '(' in content or '(' in content or '《' in content or '[' in content or start_token in content or end_token in content:
                    continue
                if len(content) < 5 or len(content) > 79:
                    continue
                # 处理后的诗文加入前缀B(Begin)和E(End)
                content = start_token + content + end_token
                poems.append(content)
            except ValueError as e:
                pass

    # 按照诗词字数进行排序
    poems = sorted(poems, key=lambda l: len(line))

    # 统计每个字出现的次数
    all_words = [word for poem in poems for word in poem]
    # 计算每个字对应频率
    counter = collections.Counter(all_words)
    # 按照频率进行倒排
    words = sorted(counter.keys(), key=lambda x: counter[x], reverse=True)

    words.append(' ')
    L = len(words)
    # 每个字影射为一个数字ID
    word_int_map = dict(zip(words, range(L)))
    # 将诗文由字转为对应的数字ID
    poems_vector = [list(map(lambda word: word_int_map.get(word, L), poem)) for poem in poems]
    # 依次返回数字ID表示的诗句、汉字-ID的映射map、所有的汉字的列表
    return poems_vector, word_int_map, words


if __name__ == '__main__':
    filepath = r'C:\Users\01\Desktop\机器学习作业\sklearn+tensorflow\[NLP]11POETS\data\poems.txt'
    poems_vector, word_to_int, vocabularies = process_poems(filepath)

3.模型构建

代码位于model.py的rnn_model方法,在这里要学的是模型的构建方法,比较值得学习。

# -*- coding: utf-8 -*
import tensorflow as tf
import numpy as np


def rnn_model(model, input_data, output_data, vocab_size, rnn_size=128, num_layers=2, batch_size=64,
              learning_rate=0.01):
    """
        construct rnn seq2seq model.
        :param model: model class
        :param input_data: 输入数据占位符
        :param output_data: 输出数据占位符
        :param vocab_size: words总长度
        :param rnn_size: RNN中的单元数
        :param num_layers: RNN层数
        :param batch_size: 每个batch样本数
        :param learning_rate: 学习率
        :return: 返回模型状态集
    """
    # 声明模型状态集, 由于模型需要返回多个相关值, 故以map集合的形式向外部返回
    end_points = {}
    # 选择模型的具体cell类型,源代码中使用的是仍是tf.contrib.rnn,在这里做了更新
    if model == 'rnn':
        cell_fun = tf.nn.rnn_cell.BasicRNNCell
    elif model == 'gru':
        cell_fun = tf.nn.rnn_cell.GRUCell
    elif model == 'lstm':
        cell_fun = tf.nn.rnn_cell.LSTMCell

    # 构造具体的cell
    cell = cell_fun(rnn_size, state_is_tuple=True)
    # 将单层的cell变为更深的cell, 以表征更复杂的关联关系
    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)

    # 初始化cell的状态
    if output_data is not None:
        # 训练时batch_size容量0
        initial_state = cell.zero_state(batch_size, tf.float32)
    else:
        # 使用时batch_size容量为1
        initial_state = cell.zero_state(1, tf.float32)
    # tensorflow对于lookup_embedding的操作只能再cpu上进行,其实这个默认是在cpu上操作的。
    with tf.device("/cpu:0"):
        embedding = tf.get_variable('embedding', initializer=tf.random_uniform(
            [vocab_size + 1, rnn_size], -1.0, 1.0))
        # 处理之后的shape为(batch_size, n_steps, rnn_size)
        inputs = tf.nn.embedding_lookup(embedding, input_data)

    outputs, last_state=tf.nn.dynamic_rnn(cell,inputs,initial_state=initial_state)
    output=tf.reshape(outputs, [-1,rnn_size])

    weights=tf.Variable(tf.truncated_normal([rnn_size,vocab_size+1]))
    bias=tf.Variable(tf.zeros(shape=[vocab_size+1]))
    logits=tf.nn.bias_add(tf.matmul(output,weights),bias=bias)

    if output_data is not None:
        labels = tf.one_hot(tf.reshape(output_data, [-1]), depth=vocab_size + 1)
        loss = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)
        
        total_loss = tf.reduce_mean(loss)
        train_op = tf.train.AdamOptimizer(learning_rate).minimize(total_loss)

        end_points['initial_state'] = initial_state
        end_points['output'] = output
        end_points['train_op'] = train_op
        end_points['total_loss'] = total_loss
        end_points['loss'] = loss
        end_points['last_state'] = last_state
    else:
        prediction = tf.nn.softmax(logits)

        end_points['initial_state'] = initial_state
        end_points['last_state'] = last_state
        end_points['prediction'] = prediction

    return end_points

你可能感兴趣的:(自然语言处理N天-Day1102从0搭建一个RNN神经网络作诗)