- 18、企业级服务-JMS
跟着汪老师学编程
java开发语言java-ee
JavaMessageService(JMS)一.引言JavaMessageService(JMS)是Java平台上用于实现消息orientedmiddleware(消息中间件)的标准API。它为企业级应用中的异步通信提供了一种高效、灵活且可靠的方式,允许不同的系统组件之间通过发送和接收消息进行通信,而无需直接依赖彼此的实现细节。JMS支持两种主要的消息模型:点对点(Point-to-Point,
- flutter 专题 七十九 Flutter使用JsBridge方式处理Webview与H5通信
leluckys
Flutter面试与实战flutter
目前,移动跨平台开发作为移动开发的重要组成部分,是移动开发者必须掌握的技能,也是自我提升的重要手段。作为Google推出的跨平台技术方案,Flutter具有诸多的优势,已经或正在被广大开发者应用在移动应用开发中。在过去的2019年,我看到越来越多的公司和个人开始使用Flutter来开发跨平台应用,对于移动应用开发来说,Flutter能够满足几乎所有的业务开发需求,所以,学习Flutter正当时。众
- 在 MacOS 上安装 Flutter:M1、M2 和 M3 芯片指南
知识大胖
Flutter开发教程大全macosflutter
简介Flutter是一个强大的跨平台开发框架,但在搭载M1、M2或M3芯片的Mac上设置它可能比您想象的要复杂得多。在本指南中,我将引导您完成整个过程,重点介绍我最初遇到的步骤,以帮助您避免同样的陷阱。推荐文章《Flutter应用中的GooglePay和ApplePay集成应用中的支付(教程含源码)》权重2,支付类《Flutter技巧之在Flutter中使一行按钮具有相同的宽度》《Flutter教
- 解决Windows平台下 Visual Studio 中文显示乱码问题
人生三渡
VisualStudiovisualstudio代码规范预编码
目录常用编码格式介绍中文乱码的原因中文乱码的解决方式下载VisualStudio的扩展插件验证是否乱码问题是否解决常用编码格式介绍我们一般常用的就以下几种编码格式:GBK,UTF-8以及Unicode等。GBK:是一种汉字编码规范,它扩展了GB2312编码标准,增加了更多的汉字和符号。GBK详解UTF-8:是针对Unicode的一种可变长度字符编码。它可以用来表示Unicode标准中的任何字符,而
- C++基础 调用堆异常
路奇怪
C++基础c++
目录跨平台(C++23环境下)windows下可以极大地帮助解决在开发人员系统上无法重现的客户问题,并且调用了一个通用函数,您不知道它的调用者,因为它们很多。必须为客户提供一个可执行文件和一个使用该可执行文件构建的pdb,才能获得正确的调用堆栈。pdb文件包含调试符号。您不能提供稍后从同一代码构建的pdb。当我们构建可执行文件时,每个函数都有一个地址偏移量。pdb基于这些偏移量。再次生成二进制文件
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 物联网(IoT)架构中,平台层的应用与技术
小赖同学啊
智能硬件物联网架构
在物联网(IoT)架构中,平台层是连接物理设备(感知层)和应用服务(应用层)的核心部分。它负责数据的采集、处理、存储、分析以及设备管理等功能,是物联网系统的“大脑”。以下是平台层的主要功能及其技术实现手段:平台层的主要功能设备管理:功能:管理物联网设备的注册、配置、监控、维护和故障诊断。技术手段:设备注册与认证:使用MQTT、CoAP等协议实现设备接入,结合OAuth、X.509证书等技术进行设备
- 【Kubernetes】Kubernetes 容器集群管理系统概述
码农鑫哥的日常
kubernetes容器云原生1024程序员节
目录前言什么是云原生?容器编排介绍云原生容器云容器编排云平台SRE一、Kubernetes概述1.1K8S是什么?1.1.1作用1.2为什么要用K8S?1.2.1K8s目标1.2.2K8s对于docker的优势1.2.3K8s功能1.2.4K8s特性1.2.4.1弹性伸缩1.2.4.2自我修复1.2.4.3服务发现和负载均衡1.2.4.4自动发布(默认滚动发布模式)和回滚1.2.4.5集中化配置管
- Android Jetpack介绍
Gary.Mi
Android
1.文档背景本文是Jetpack介绍系列文档的开篇,是对Jetpack整体的介绍,后续会对其中的各个组件分别单独说明。2.官方简介Jetpack是一套库、工具和指南,可帮助开发者更轻松地编写优质应用。使用这些组件,可帮助开发者遵循最佳实践,摆脱编写样板代码的工作并简化复杂任务,使开发者将精力集中放在所需的代码上。Jetpack包含与平台API解除捆绑的androidx.*软件包库。这意味着,它可以
- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 太速科技-基于3U VPX的 Jetson Xavier NX GPU计算主板
北京太速科技股份有限公司
人工智能
基于3UVPX的JetsonXavierNXGPU计算主板一、产品概述基于3UVPX的JetsonXavierNXGPU计算主板,是AI人工智能的低功耗计算平台,是LINUX环境下软件开发等的理想工具,拥有VPX标准连接器和特性的接口。二、板卡原理框图三、板卡外扩功能P0接口电源输入+12V,板卡总功耗60W以内P1接口1路RS422接口,一路GigabitEthernet前面板接口MICROUS
- 基于Docker及Kubernetes技术构建容器云(PaaS)平台概述_基于kubernetes iaas(1)
2401_83946044
程序员dockerkubernetespaas
|组成模块|模块说明||—|—||AppRouter[流量接入层]|接收用户请求,并转发到不同的AppRuntime。||AppRuntime[应用运行层]|应用运行环境,为各个应用提供基本的运行引擎,从而让app能够运行起来。||Services[基础服务层]|各个通用基础服务,主要是对主流的服务提供通用的接入,例如数据库等。||PlatformControl[平台控制层]|整个平台的控制中心,
- 软件2.0的无服务器计算架构
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《软件2.0的无服务器计算架构》关键词无服务器计算软件架构软件2.0事件驱动函数编程微服务云原生摘要本文深入探讨了软件2.0时代的无服务器计算架构。首先,我们回顾了无服务器计算的兴起背景,与传统服务器计算的区别,以及其设计理念。接着,介绍了主流的无服务器平台,并探讨了无服务器计算在软件2.0中的应用。随后,我们详细阐述了无服务器计算的核心技术,包括事件驱动架构、编写无服务器函数、无服务器数据库和无
- 深入解析 React 最新特性:革新、应用与最佳实践
赵大仁
前端ReactNativereact.js前端前端框架
深入解析React最新特性:革新、应用与最佳实践1.引言React作为前端开发的核心技术之一,近年来不断推出新的API和优化机制,从ConcurrentRendering(并发模式)到ServerComponents(服务器组件),都在不断提升开发体验和应用性能。本文将深入解析React最新特性,包括React18并发模式、useTransition、useDeferredValue、ReactS
- AI Agent席卷B端:解锁部门效率新玩法,挑战企业软件的智能革命
Hello kele
人工智能经验分享AI编程程序员
随着人工智能技术的迅猛发展,AIAgent(人工智能代理)作为一种新兴的生产力工具,正在深刻改变企业软件生态。特别是在B端(面向企业端)的应用场景中,AIAgent的潜力逐渐显现。从最近Dify在GitHub上突破8万Star、进入开源领域Top100,到OpenManus几天内收获2万Star的惊人表现,开源AI项目的爆发式增长表明,在AI时代,优质的开源项目正以空前的速度吸引关注。与此同时,传
- 算法在各领域的广泛应用:100 个实例全解析
软件职业规划
AI&模型算法
一、互联网与信息技术领域搜索引擎算法:如谷歌的PageRank算法,用于根据网页的重要性和相关性对搜索结果进行排序,帮助用户快速找到所需信息。推荐系统算法:例如亚马逊和Netflix使用的协同过滤算法。根据用户的历史行为(购买、观看记录等)和其他相似用户的偏好,为用户推荐可能感兴趣的产品或内容。社交网络分析算法:用于分析社交网络中的用户关系,如Facebook通过算法发现用户的好友推荐、社区划分等
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发引言在HarmonyNext生态系统中,实时音视频通信是一个极具挑战性和实用价值的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的实时音视频通信应用,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——实时视频会议应用,来展示如何在HarmonyNext平台上实现高效的音视频通信。1.项目概述1.1目标开
- HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的技术领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的分布式任务调度系统,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——分布式计算任务调度系统,来展示如何在HarmonyNext平台上实现高效的任务调度。1.项目概述1.1目标开发
- HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发引言在分布式系统的开发中,跨设备数据同步是一个极具挑战性的问题。随着HarmonyOSNext的发布,ArkTS作为其核心开发语言,为开发者提供了强大的分布式能力。本文将深入探讨如何利用ArkTS在HarmonyNext平台上开发一个跨设备分布式数据同步应用。我们将从分布式数据管理的基础理论出发,逐步构建一个完整的应用,涵盖数
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- Python 爬虫实战:游戏论坛评论数据抓取与游戏热度分析
西攻城狮北
python开发语言爬虫
一、引言随着电子游戏产业的飞速发展,游戏论坛成为了玩家交流心得、分享体验的重要平台。通过分析游戏论坛的评论数据,我们可以了解不同游戏的热度、玩家的评价以及游戏的受欢迎程度。本文将详细介绍如何使用Python爬虫技术抓取游戏论坛的评论数据,并进行游戏热度分析。二、项目背景与目标2.1项目背景游戏论坛如Steam社区、贴吧、NGA等,拥有大量的用户和丰富的评论数据。这些数据反映了玩家对不同游戏的评价和
- 百度快速收录2025最新科普
SEORoal
百度
跨境物流的智能突围战宁波某RCEP跨境物流平台接入214维特征矩阵后:✅'智能清关系统’72小时冲进TOP3✅'东盟电子报关’长尾词覆盖量暴涨4.2倍✅日均有效询盘突破300+技术三板斧:标题智能提取引擎(支持38种语义变异)动态阻抗参数混淆(误差≤0.15μΩ)实时工商特征同步(每2小时更新)2025生存指南:采用神经网络语义映射(NLP准确率98.2%)部署质量监控系统(误差率≤0.15%)加
- HarmonyNext深度解析:ArkUI高效渲染与性能优化实战
披光人
harmonyOSubuntulinux运维
一、HarmonyNext渲染引擎技术演进(约1200字技术解析)HarmonyOSNext在UI渲染架构层面实现了重大突破,其创新的ArkUI渲染引擎采用分层异步架构设计。核心改进包括:原子化渲染管线采用基于Vulkan的跨平台渲染后端,通过原子化渲染指令拆分技术,实现绘制指令的并行执行能力。在华为Mate60系列实测中,复杂界面渲染延迟降低42%智能脏区检测机制基于机器学习的区域更新预测算法,
- 解锁高性能Web应用:Gunicorn、Flask与Docker的高并发部署秘籍
我是瓦力
前端gunicornflask
引言在当今的互联网时代,高并发Web应用已成为许多企业的核心需求。无论是电商平台、社交网络还是实时数据分析系统,高并发能力直接影响到用户体验和业务成败。本文将带你深入探讨如何利用Gunicorn、Flask和Docker,实现高性能、高并发的Web应用部署。Gunicorn、Flask和Docker的基本概念Gunicorn:GreenUnicorn(简称Gunicorn)是一个PythonWSG
- 分布式光伏监控系统设计
能源数字化创业者
分布式能源管理
一、产品简介快控光伏运维云平台软件是针对工商业分布式光伏电站设计研发的一款集控管理系统。他通过智能网关采集现场逆变器、气象站、综合测控装置等各类设备的运行数据和状态,实现对光伏电站的24小时实时在线监控诊断,有效的保障了电站的安全运行。同时系统拉通线上线下运维,可极大的提高电站的运维的效率和质量。该平台软件主要有以下几大功能:1、实时在线监控,实时故障监测,第一时间通知电站运维人员及时消除隐患,确
- STM32与HAL库开发实战:深入探索ESP8266的多种工作模式
坏柠
嵌入式开发笔记stm32单片机嵌入式硬件
STM32与HAL库开发实战:深入探索ESP8266的多种工作模式一、硬件平台简介STM32F103C8T6(BluePill核心板)作为主控芯片,通过HAL库直接驱动ESP8266WiFi模块,实现以下核心功能:STA模式:连接外部WiFi路由器AP模式:自建WiFi热点TCP客户端/服务器模式:实现网络数据传输混合模式:STA+AP共存低功耗模式:深度睡眠控制二、硬件连接在
- STL中list的使用
海马HiMark
C++STLlist
list的底层结构list底层是一个带头节点的双向循环链表,任意位置插入和删除时间复杂度0(1)list迭代器由于list底层是带头节点的双向循环链表,因此list的迭代器需要list的实现者自己提供迭代器怎么实现呢?迭代器的本质是指针,将指针封装出新的类型,指针有的操作,迭代器也视情况支持这些操作,比如:指针++,–,*,->等操作。迭代器在类中将这些操作重载出来即可,然后将list迭代器看作l
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
开源
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 千问大模型携手超算互联网:算力驱动下的安全新征程
安全
一、技术革命的新纪元:从“火种”到“燎原”2025年3月,中国国家超算互联网平台宣布接入阿里巴巴“千问QwQ-32B”大模型。这一事件,标志着人类算力资源整合迈入新阶段——超算中心不再仅是巨型计算机的集合,而是演化为承载智能的“数字大脑”。用户可通过平台免费调用百万级Token的计算资源,如同古希腊神话中普罗米修斯盗火予人,超算互联网正将“智能之火”播撒至科研、工业乃至普通开发者手中。然而,火种既
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号