kafka原理和实践(三)spring-kafka生产者源码

系列目录

kafka原理和实践(一)原理:10分钟入门

kafka原理和实践(二)spring-kafka简单实践

kafka原理和实践(三)spring-kafka生产者源码

kafka原理和实践(四)spring-kafka消费者源码

kafka原理和实践(五)spring-kafka配置详解

kafka原理和实践(六)总结升华

 

==============正文分割线=====================

由于项目上了Spring-cloud,继承了spring-boot-start,默认支持版本是spring-kafka-1.1.7,本文基于源码spring-kafka-1.1.7分析。虽然官网已经到2.0版本,但我们分析核心方法基本不变,官网飞机票

一、 KafkaProducer发送模型

kafka原理和实践(三)spring-kafka生产者源码_第1张图片

如上图,由KafkaTemplete发起发送请求,可分为如下几个步骤:

 

一、数据入池

1.KafkaProducer启动发送消息

2.消息发送拦截器拦截

3.用序列化器把数据进行序列化

4.用分区器选择消息的分区

5.添加进记录累加器

二、NIO发送数据

6.等待数据条数达到批量发送阀值或者新建一个RecoedBatch,立即唤醒Sender线程执行run方法

7.发送器内部从累加器Deque中拿到要发送的数据RecordBatch转换成ClientRequest客户端请求

8.在发送器内部,经由NetworkClient转换成RequestSend(Send接口)并调用Selector暂存进KafkaChannel(NetWorkClient维护的通道Map channels)

9.执行nio发送消息(1.Selector.select()2.把KafkaChannel中的Send数据(ByteBuffer[])写入KafkaChannel的写通道GatheringByteChannel)

 

 二、KafkaTemplate模板

spring-kafka提供了简单的KafkaTemplate类,直接调用发送方法即可,只需要让容器知道这个bean即可(具体见第二章实践中xml中配置bean)。

  1 public class KafkaTemplate implements KafkaOperations {
  2  14      ...
 15 
 16     /**
 17      * Create an instance using the supplied producer factory and autoFlush false.
 18      * @param producerFactory the producer factory.
 19      */
 20     public KafkaTemplate(ProducerFactory producerFactory) {
 21         this(producerFactory, false);
 22     }
 23 
 24     /**
 25      * Create an instance using the supplied producer factory and autoFlush setting.
 26      * Set autoFlush to true if you wish to synchronously interact with Kafka, calling
 27      * {@link java.util.concurrent.Future#get()} on the result.
 28      * @param producerFactory the producer factory.
 29      * @param autoFlush true to flush after each send.
 30      */
 31     public KafkaTemplate(ProducerFactory producerFactory, boolean autoFlush) {
 32         this.producerFactory = producerFactory;
 33         this.autoFlush = autoFlush;
 34     }
 36    ...
181     /**
182      * Send the producer record.
183      * @param producerRecord the producer record.
184      * @return a Future for the {@link RecordMetadata}.
185      */
186     protected ListenableFuture> doSend(final ProducerRecord producerRecord) {
187         final Producer producer = getTheProducer();
188         if (this.logger.isTraceEnabled()) {
189             this.logger.trace("Sending: " + producerRecord);
190         }
191         final SettableListenableFuture> future = new SettableListenableFuture<>();
192         producer.send(producerRecord, new Callback() {
193 
194             @Override
195             public void onCompletion(RecordMetadata metadata, Exception exception) {
196                 try {
197                     if (exception == null) {
198                         future.set(new SendResult<>(producerRecord, metadata));
199                         if (KafkaTemplate.this.producerListener != null
200                                 && KafkaTemplate.this.producerListener.isInterestedInSuccess()) {
201                             KafkaTemplate.this.producerListener.onSuccess(producerRecord.topic(),
202                                     producerRecord.partition(), producerRecord.key(), producerRecord.value(), metadata);
203                         }
204                     }
205                     else {
206                         future.setException(new KafkaProducerException(producerRecord, "Failed to send", exception));
207                         if (KafkaTemplate.this.producerListener != null) {
208                             KafkaTemplate.this.producerListener.onError(producerRecord.topic(),
209                                     producerRecord.partition(),
210                                     producerRecord.key(),
211                                     producerRecord.value(),
212                                     exception);
213                         }
214                     }
215                 }
216                 finally {
217                     producer.close();
218                 }
219             }
220 
221         });
222         if (this.autoFlush) {
223             flush();
224         }
225         if (this.logger.isTraceEnabled()) {
226             this.logger.trace("Sent: " + producerRecord);
227         }
228         return future;
229     }
235 }

 KafkaTemplate源码重点

1.构造函数,入参ProducerFactory构造工厂和是否自动刷新(缓冲区的records立即发送)

2.发送消息doSend,这里核心点就2个:

1)producer.send(producerRecord, Callback)producer即KafkaProducer

2)Callback回调onCompletion完成,onSuccess,onError。

三、KafkaProducer

3.1KafkaProducer构造过程

  1 @SuppressWarnings({"unchecked", "deprecation"})
  2     private KafkaProducer(ProducerConfig config, Serializer keySerializer, Serializer valueSerializer) {
  3         try {
  4             log.trace("Starting the Kafka producer");
  5             Map userProvidedConfigs = config.originals();
  6             this.producerConfig = config;
  7             this.time = new SystemTime();
  8 
  9             clientId = config.getString(ProducerConfig.CLIENT_ID_CONFIG);
 10             if (clientId.length() <= 0)
 11                 clientId = "producer-" + PRODUCER_CLIENT_ID_SEQUENCE.getAndIncrement();
 12             Map metricTags = new LinkedHashMap();
 13             metricTags.put("client-id", clientId);
 14             MetricConfig metricConfig = new MetricConfig().samples(config.getInt(ProducerConfig.METRICS_NUM_SAMPLES_CONFIG))
 15                     .timeWindow(config.getLong(ProducerConfig.METRICS_SAMPLE_WINDOW_MS_CONFIG), TimeUnit.MILLISECONDS)
 16                     .tags(metricTags);
 17             List reporters = config.getConfiguredInstances(ProducerConfig.METRIC_REPORTER_CLASSES_CONFIG,
 18                     MetricsReporter.class);
 19             reporters.add(new JmxReporter(JMX_PREFIX));
 20             this.metrics = new Metrics(metricConfig, reporters, time);
 21             this.partitioner = config.getConfiguredInstance(ProducerConfig.PARTITIONER_CLASS_CONFIG, Partitioner.class);
 22             long retryBackoffMs = config.getLong(ProducerConfig.RETRY_BACKOFF_MS_CONFIG);
 23             if (keySerializer == null) {
 24                 this.keySerializer = config.getConfiguredInstance(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
 25                         Serializer.class);
 26                 this.keySerializer.configure(config.originals(), true);
 27             } else {
 28                 config.ignore(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG);
 29                 this.keySerializer = keySerializer;
 30             }
 31             if (valueSerializer == null) {
 32                 this.valueSerializer = config.getConfiguredInstance(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
 33                         Serializer.class);
 34                 this.valueSerializer.configure(config.originals(), false);
 35             } else {
 36                 config.ignore(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG);
 37                 this.valueSerializer = valueSerializer;
 38             }
 39 
 40             // load interceptors and make sure they get clientId
 41             userProvidedConfigs.put(ProducerConfig.CLIENT_ID_CONFIG, clientId);
 42             List> interceptorList = (List) (new ProducerConfig(userProvidedConfigs)).getConfiguredInstances(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
 43                     ProducerInterceptor.class);
 44             this.interceptors = interceptorList.isEmpty() ? null : new ProducerInterceptors<>(interceptorList);
 45 
 46             ClusterResourceListeners clusterResourceListeners = configureClusterResourceListeners(keySerializer, valueSerializer, interceptorList, reporters);
 47             this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG), true, clusterResourceListeners);
 48             this.maxRequestSize = config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG);
 49             this.totalMemorySize = config.getLong(ProducerConfig.BUFFER_MEMORY_CONFIG);
 50             this.compressionType = CompressionType.forName(config.getString(ProducerConfig.COMPRESSION_TYPE_CONFIG));
 51             /* check for user defined settings.
 52              * If the BLOCK_ON_BUFFER_FULL is set to true,we do not honor METADATA_FETCH_TIMEOUT_CONFIG.
 53              * This should be removed with release 0.9 when the deprecated configs are removed.
 54              */
 55             if (userProvidedConfigs.containsKey(ProducerConfig.BLOCK_ON_BUFFER_FULL_CONFIG)) {
 56                 log.warn(ProducerConfig.BLOCK_ON_BUFFER_FULL_CONFIG + " config is deprecated and will be removed soon. " +
 57                         "Please use " + ProducerConfig.MAX_BLOCK_MS_CONFIG);
 58                 boolean blockOnBufferFull = config.getBoolean(ProducerConfig.BLOCK_ON_BUFFER_FULL_CONFIG);
 59                 if (blockOnBufferFull) {
 60                     this.maxBlockTimeMs = Long.MAX_VALUE;
 61                 } else if (userProvidedConfigs.containsKey(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG)) {
 62                     log.warn(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG + " config is deprecated and will be removed soon. " +
 63                             "Please use " + ProducerConfig.MAX_BLOCK_MS_CONFIG);
 64                     this.maxBlockTimeMs = config.getLong(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG);
 65                 } else {
 66                     this.maxBlockTimeMs = config.getLong(ProducerConfig.MAX_BLOCK_MS_CONFIG);
 67                 }
 68             } else if (userProvidedConfigs.containsKey(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG)) {
 69                 log.warn(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG + " config is deprecated and will be removed soon. " +
 70                         "Please use " + ProducerConfig.MAX_BLOCK_MS_CONFIG);
 71                 this.maxBlockTimeMs = config.getLong(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG);
 72             } else {
 73                 this.maxBlockTimeMs = config.getLong(ProducerConfig.MAX_BLOCK_MS_CONFIG);
 74             }
 75 
 76             /* check for user defined settings.
 77              * If the TIME_OUT config is set use that for request timeout.
 78              * This should be removed with release 0.9
 79              */
 80             if (userProvidedConfigs.containsKey(ProducerConfig.TIMEOUT_CONFIG)) {
 81                 log.warn(ProducerConfig.TIMEOUT_CONFIG + " config is deprecated and will be removed soon. Please use " +
 82                         ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG);
 83                 this.requestTimeoutMs = config.getInt(ProducerConfig.TIMEOUT_CONFIG);
 84             } else {
 85                 this.requestTimeoutMs = config.getInt(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG);
 86             }
 87 
 88             this.accumulator = new RecordAccumulator(config.getInt(ProducerConfig.BATCH_SIZE_CONFIG),
 89                     this.totalMemorySize,
 90                     this.compressionType,
 91                     config.getLong(ProducerConfig.LINGER_MS_CONFIG),
 92                     retryBackoffMs,
 93                     metrics,
 94                     time);
 95 
 96             List addresses = ClientUtils.parseAndValidateAddresses(config.getList(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG));
 97             this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds());
 98             ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values());
 99             NetworkClient client = new NetworkClient(
100                     new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", channelBuilder),
101                     this.metadata,
102                     clientId,
103                     config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION),
104                     config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG),
105                     config.getInt(ProducerConfig.SEND_BUFFER_CONFIG),
106                     config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG),
107                     this.requestTimeoutMs, time);
108             this.sender = new Sender(client,
109                     this.metadata,
110                     this.accumulator,
111                     config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION) == 1,
112                     config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG),
113                     (short) parseAcks(config.getString(ProducerConfig.ACKS_CONFIG)),
114                     config.getInt(ProducerConfig.RETRIES_CONFIG),
115                     this.metrics,
116                     new SystemTime(),
117                     clientId,
118                     this.requestTimeoutMs);
119             String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : "");
120             this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
121             this.ioThread.start();
122 
123             this.errors = this.metrics.sensor("errors");
124 
125 
126             config.logUnused();
127             AppInfoParser.registerAppInfo(JMX_PREFIX, clientId);
128             log.debug("Kafka producer started");
129         } catch (Throwable t) {
130             // call close methods if internal objects are already constructed
131             // this is to prevent resource leak. see KAFKA-2121
132             close(0, TimeUnit.MILLISECONDS, true);
133             // now propagate the exception
134             throw new KafkaException("Failed to construct kafka producer", t);
135         }
136     }

如上图,KafkaProducer包含集合核心组件:

1)Metadata元数据:维护cluster集群信息、topic信息。

2)RecordAccumulator记录累加器: 缓存生产数据,然后批量发送,用以减少IO次数,提升性能。

2)Sender发送器:metadata+RecordAccumulator+NetworkClient网络客户端

3)KafkaThread IO线程:一个自定义名称的线程,Sender作为Runnable接口,线程start后,运行Sender的run方法,go!

  1 /**
  2      * The main run loop for the sender thread
  3      */
  4     public void run() {
  5         log.debug("Starting Kafka producer I/O thread.");
  6 
  7         // main loop, runs until close is called
  8         while (running) {
  9             try {
 10                 run(time.milliseconds());
 11             } catch (Exception e) {
 12                 log.error("Uncaught error in kafka producer I/O thread: ", e);
 13             }
 14         }
 15 
 16         log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records.");
 17 
 18         // okay we stopped accepting requests but there may still be
 19         // requests in the accumulator or waiting for acknowledgment,
 20         // wait until these are completed.
 21         while (!forceClose && (this.accumulator.hasUnsent() || this.client.inFlightRequestCount() > 0)) {
 22             try {
 23                 run(time.milliseconds());
 24             } catch (Exception e) {
 25                 log.error("Uncaught error in kafka producer I/O thread: ", e);
 26             }
 27         }
 28         if (forceClose) {
 29             // We need to fail all the incomplete batches and wake up the threads waiting on
 30             // the futures.
 31             this.accumulator.abortIncompleteBatches();
 32         }
 33         try {
 34             this.client.close();
 35         } catch (Exception e) {
 36             log.error("Failed to close network client", e);
 37         }
 38 
 39         log.debug("Shutdown of Kafka producer I/O thread has completed.");
 40     }
 41 
 42     /**
 43      * Run a single iteration of sending
 44      * 
 45      * @param now
 46      *            The current POSIX time in milliseconds
 47      */
 48     void run(long now) {
 49         Cluster cluster = metadata.fetch();
 50         // 获取集群中已准备好的分区列表
 51         RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
 52 
 53         // 如果有的分区的leader还未知 ,强制更新元数据
 54         if (!result.unknownLeaderTopics.isEmpty()) {
 58             for (String topic : result.unknownLeaderTopics)
 59                 this.metadata.add(topic);
 60             this.metadata.requestUpdate();
 61         }
 62 
 63         // 移除NetworkClient还没准备好的发送到达的节点
 64         Iterator iter = result.readyNodes.iterator();
 65         long notReadyTimeout = Long.MAX_VALUE;
 66         while (iter.hasNext()) {
 67             Node node = iter.next();
 68             if (!this.client.ready(node, now)) {
 69                 iter.remove();
 70                 notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
 71             }
 72         }
 73 
 74         // 根据准备好的节点,创建生产者请求
 75         Map> batches = this.accumulator.drain(cluster,
 76                                                                          result.readyNodes,
 77                                                                          this.maxRequestSize,
 78                                                                          now);
 79         if (guaranteeMessageOrder) {
 80             // Mute all the partitions drained
 81             for (List batchList : batches.values()) {
 82                 for (RecordBatch batch : batchList)
 83                     this.accumulator.mutePartition(batch.topicPartition);
 84             }
 85         }
 86      // 超时处理
 87         List expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, now);
 88         // update sensors
 89         for (RecordBatch expiredBatch : expiredBatches)
 90             this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);
 91 
 92         sensors.updateProduceRequestMetrics(batches);
 93         List requests = createProduceRequests(batches, now);
 94         // 如果存在已就绪节点,置轮询时间为0
 98         long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
 99         if (result.readyNodes.size() > 0) {
100             log.trace("Nodes with data ready to send: {}", result.readyNodes);
101             log.trace("Created {} produce requests: {}", requests.size(), requests);
102             pollTimeout = 0;
103         }
104         for (ClientRequest request : requests)
105             client.send(request, now);
106 
107         // 1.如果有一些分区已准备好,查询时间为0;
109 // 2.否则如果有分区有数据存储但是还没准备好,查询时间在当前时间和滞留过期时间差 110 // 3.其他情况,查询时间在当前时间和元数据过期时间差 111 this.client.poll(pollTimeout, now); 112 }

 对创建好的requests遍历执行:client.send(request, now);NetworkClient发送ClientRequest

 1 @Override
 2     public void send(ClientRequest request, long now) {
 3         String nodeId = request.request().destination();
 4         if (!canSendRequest(nodeId))
 5             throw new IllegalStateException("Attempt to send a request to node " + nodeId + " which is not ready.");
 6         doSend(request, now);
 7     }
 8 
 9     private void doSend(ClientRequest request, long now) {
10         request.setSendTimeMs(now);
11         this.inFlightRequests.add(request);
12         selector.send(request.request());
13     }

 

1 public void send(Send send) {
2         KafkaChannel channel = channelOrFail(send.destination());
3         try {
4             channel.setSend(send);
5         } catch (CancelledKeyException e) {
6             this.failedSends.add(send.destination());
7             close(channel);
8         }
9     }

见上图,最终实际上就是构造了一个KafkaChannel对象,并设置了发送内容和目的地。

client.poll(pollTimeout, now);实际的IO读写操作。

 1 @Override
 2     public List poll(long timeout, long now) {
 3         long metadataTimeout = metadataUpdater.maybeUpdate(now);
 4         try {
 5             this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
 6         } catch (IOException e) {
 7             log.error("Unexpected error during I/O", e);
 8         }
 9 
10         // 处理执行完后,构建各种ClientResponse添加进responses
11 long updatedNow = this.time.milliseconds(); 12 List responses = new ArrayList<>(); 13 handleCompletedSends(responses, updatedNow); 14 handleCompletedReceives(responses, updatedNow); 15 handleDisconnections(responses, updatedNow); 16 handleConnections(); 17 handleTimedOutRequests(responses, updatedNow); 18 19 //遍历responses处理回调 20 for (ClientResponse response : responses) { 21 if (response.request().hasCallback()) { 22 try { 23 response.request().callback().onComplete(response); 24 } catch (Exception e) { 25 log.error("Uncaught error in request completion:", e); 26 } 27 } 28 } 29 30 return responses; 31 }

核心方法selector.poll最终执行了什么?

 1 public void poll(long timeout) throws IOException {
 2         if (timeout < 0)
 3             throw new IllegalArgumentException("timeout should be >= 0");
 4 
 5         clear();
 6 
 7         if (hasStagedReceives() || !immediatelyConnectedKeys.isEmpty())
 8             timeout = 0;
 9 
10         /* check ready keys */
11         long startSelect = time.nanoseconds();
12         int readyKeys = select(timeout);
13         long endSelect = time.nanoseconds();
14         this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());
15 
16         if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) {
17             pollSelectionKeys(this.nioSelector.selectedKeys(), false, endSelect);
18             pollSelectionKeys(immediatelyConnectedKeys, true, endSelect);
19         }
20 
21         addToCompletedReceives();
22 
23         long endIo = time.nanoseconds();
24         this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
25 
26         // we use the time at the end of select to ensure that we don't close any connections that
27         // have just been processed in pollSelectionKeys
28         maybeCloseOldestConnection(endSelect);
29     }

如上图,核心逻辑就2个:查询等待通道,写入数据。

1)select:等待通道变成就绪状态,返回已准备好的通道数

1 private int select(long ms) throws IOException {
2         if (ms < 0L)
3             throw new IllegalArgumentException("timeout should be >= 0");
4 
5         if (ms == 0L)
6             return this.nioSelector.selectNow();
7         else
8             return this.nioSelector.select(ms);
9     }

java.nio.channels.Selector nioSelector看上图,最终其实就是一个JDK自带的JAVA NIO Selector执行 select方法,自上次调用select()方法后有多少通道变成就绪状态。

Selector.select(ms) 最长阻塞ms毫秒(通道在你注册的事件上就绪)。

Selector.selectNow:不会阻塞,不管什么通道就绪都立刻返回,没有通道变成可选择的,则此方法直接返回零

NIO Selector

1.JAVA NIO模型

比较多,不在这里展开写,预留飞机票一张。

2.Selector

关于Selector这里就简单引用一张图,有图有真相。

kafka原理和实践(三)spring-kafka生产者源码_第2张图片

2)pollSelectionKeys 如果已准备好通道数>0,根据key把数据(ByteBuffer)写入指定Channel

 1 private void pollSelectionKeys(Iterable selectionKeys,
 2 boolean isImmediatelyConnected,  3 long currentTimeNanos) {  4 Iterator iterator = selectionKeys.iterator();  5 while (iterator.hasNext()) {  6 SelectionKey key = iterator.next();  7  iterator.remove();  8 KafkaChannel channel = channel(key);  9 10 // register all per-connection metrics at once 11  sensors.maybeRegisterConnectionMetrics(channel.id()); 12 if (idleExpiryManager != null) 13  idleExpiryManager.update(channel.id(), currentTimeNanos); 14 15 try { 16 17 /* complete any connections that have finished their handshake (either normally or immediately) */ 18 if (isImmediatelyConnected || key.isConnectable()) { 19 if (channel.finishConnect()) { 20 this.connected.add(channel.id()); 21 this.sensors.connectionCreated.record(); 22 SocketChannel socketChannel = (SocketChannel) key.channel(); 23 log.debug("Created socket with SO_RCVBUF = {}, SO_SNDBUF = {}, SO_TIMEOUT = {} to node {}", 24  socketChannel.socket().getReceiveBufferSize(), 25  socketChannel.socket().getSendBufferSize(), 26  socketChannel.socket().getSoTimeout(), 27  channel.id()); 28 } else 29 continue; 30  } 31 32 /* 准备好通道 */ 33 if (channel.isConnected() && !channel.ready()) 34  channel.prepare(); 35 36 /* 从channel读取数据 */ 37 if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) { 38  NetworkReceive networkReceive; 39 while ((networkReceive = channel.read()) != null) 40  addToStagedReceives(channel, networkReceive); 41  } 42 43 /* 数据写入Channel */ 44 if (channel.ready() && key.isWritable()) { 45 Send send = channel.write(); 46 if (send != null) { 47 this.completedSends.add(send); 48 this.sensors.recordBytesSent(channel.id(), send.size()); 49  } 50  } 51 52 /* cancel any defunct sockets */ 53 if (!key.isValid()) { 54  close(channel); 55 this.disconnected.add(channel.id()); 56  } 57 58 } catch (Exception e) { 59 String desc = channel.socketDescription(); 60 if (e instanceof IOException) 61 log.debug("Connection with {} disconnected", desc, e); 62 else 63 log.warn("Unexpected error from {}; closing connection", desc, e); 64  close(channel); 65 this.disconnected.add(channel.id()); 66  } 67  } 68 }

 

3.2 KafkaProducer发送数据

KafkaProducer.send

 1 @Override
 2     public Future send(ProducerRecord record, Callback callback) {
 3         // intercept the record, which can be potentially modified; this method does not throw exceptions
 4         ProducerRecord interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record);
 5         return doSend(interceptedRecord, callback);
 6     }
 7 
 8     /**
 9      * 异步发送一条记录到一个主题的实现类
10      */
11     private Future doSend(ProducerRecord record, Callback callback) {
12         TopicPartition tp = null;
13         try {
14             // first make sure the metadata for the topic is available
15             ClusterAndWaitTime clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);
16             long remainingWaitMs = Math.max(0, maxBlockTimeMs - clusterAndWaitTime.waitedOnMetadataMs);
17             Cluster cluster = clusterAndWaitTime.cluster;
18             byte[] serializedKey;
19             try {// 序列化key
20                 serializedKey = keySerializer.serialize(record.topic(), record.key());
21             } catch (ClassCastException cce) {
22                 throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() +
23                         " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +
24                         " specified in key.serializer");
25             }
26             byte[] serializedValue;
27             try {// 序列化value
28                 serializedValue = valueSerializer.serialize(record.topic(), record.value());
29             } catch (ClassCastException cce) {
30                 throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() +
31                         " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +
32                         " specified in value.serializer");
33             }
34 
35             int partition = partition(record, serializedKey, serializedValue, cluster);
36             int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue);
37             ensureValidRecordSize(serializedSize);
// 主题和分区
38 tp = new TopicPartition(record.topic(), partition); 39 long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp(); 40 log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition); 41 // producer callback will make sure to call both 'callback' and interceptor callback 42 Callback interceptCallback = this.interceptors == null ? callback : new InterceptorCallback<>(callback, this.interceptors, tp); 43 RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs); 44 if (result.batchIsFull || result.newBatchCreated) { 45 log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition); 46 this.sender.wakeup(); 47 } 48 return result.future;// 返回Future 49 // handling exceptions and record the errors; 50 // for API exceptions return them in the future, 51 // for other exceptions throw directly 52 } catch (ApiException e) { 53 log.debug("Exception occurred during message send:", e); 54 if (callback != null) 55 callback.onCompletion(null, e); 56 this.errors.record(); 57 if (this.interceptors != null) 58 this.interceptors.onSendError(record, tp, e); 59 return new FutureFailure(e); 60 } catch (InterruptedException e) { 61 this.errors.record(); 62 if (this.interceptors != null) 63 this.interceptors.onSendError(record, tp, e); 64 throw new InterruptException(e); 65 } catch (BufferExhaustedException e) { 66 this.errors.record(); 67 this.metrics.sensor("buffer-exhausted-records").record(); 68 if (this.interceptors != null) 69 this.interceptors.onSendError(record, tp, e); 70 throw e; 71 } catch (KafkaException e) { 72 this.errors.record(); 73 if (this.interceptors != null) 74 this.interceptors.onSendError(record, tp, e); 75 throw e; 76 } catch (Exception e) { 77 // we notify interceptor about all exceptions, since onSend is called before anything else in this method 78 if (this.interceptors != null) 79 this.interceptors.onSendError(record, tp, e); 80 throw e; 81 } 82 }

核心方法,

1.把需要发送的数据(TopicPartition+序列化后的key,value+)添加进RecordAccumulator记录累加器

2.sender.wakeup()当累加器满了时,唤醒Sender不再阻塞在当前select()方法上。

 1 /**
 2      * 添加记录进累加器,返回result包含Future、标志位(batch批量发送已满或者新建) 
7
* @param tp 主题分区 8 * @param timestamp The timestamp of the record 9 * @param key 序列化后的key 10 * @param value 序列化后的value 11 * @param callback 请求完成时的回调函数 12 * @param maxTimeToBlock 阻塞最大毫秒数 13 */ 14 public RecordAppendResult append(TopicPartition tp, 15 long timestamp, 16 byte[] key, 17 byte[] value, 18 Callback callback, 19 long maxTimeToBlock) throws InterruptedException { 20 // 条数+1,往累加器中添加数据的条数(abortIncompleteBatches方法会作为条件使用 22 appendsInProgress.incrementAndGet(); 23 try { 24 //ConcurrentMap<TopicPartition, Deque<RecordBatch>> batches中获取key=tp的的双向队列,为空新建一个 25 Deque dq = getOrCreateDeque(tp); 26 synchronized (dq) {// 阻塞双向队列,一直到获取锁,尝试添加进累加器 27 if (closed) 28 throw new IllegalStateException("Cannot send after the producer is closed."); 29 RecordAppendResult appendResult = tryAppend(timestamp, key, value, callback, dq); 30 if (appendResult != null)// 1.如果添加成功,直接返回 31 return appendResult; 32 } 33        // =====2.添加失败==== 34 //2.1划分缓存,再次尝试添加进累加器 35 int size = Math.max(this.batchSize, Records.LOG_OVERHEAD + Record.recordSize(key, value)); 36 log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition()); 37 ByteBuffer buffer = free.allocate(size, maxTimeToBlock); 38 synchronized (dq) {// 阻塞双向队列,一直到获取锁,尝试添加进累加器 39 // 获取双向队列锁之后再次校验生产者是否已关闭 40 if (closed) 41 throw new IllegalStateException("Cannot send after the producer is closed."); 42 43 RecordAppendResult appendResult = tryAppend(timestamp, key, value, callback, dq); 44 if (appendResult != null) { 45 //2.2添加成功,释放缓冲区 46 free.deallocate(buffer); 47 return appendResult; 48 }//2.3添加失败,构建一个可写入内存的MemoryRecords 49 MemoryRecords records = MemoryRecords.emptyRecords(buffer, compression, this.batchSize); 50 RecordBatch batch = new RecordBatch(tp, records, time.milliseconds()); 51 FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, callback, time.milliseconds())); 52 53 dq.addLast(batch); 54 incomplete.add(batch);// 添加进未完成记录IncompleteRecordBatches 55 return new RecordAppendResult(future, dq.size() > 1 || batch.records.isFull(), true); 56 } 57 } finally {
        // 条数-1,往累加器中添加记录的条数
58 appendsInProgress.decrementAndGet(); 59 } 60 }

 看上图append方法,把record添加进累加器调用了三次tryAppend,前两次一样的最后一个参数是Deque,最后一次的最后一个参数是毫秒数。追踪前两个tryAppend

 1 /**
 2      * If `RecordBatch.tryAppend` fails (i.e. the record batch is full), close its memory records to release temporary
 3      * resources (like compression streams buffers).
 4      */
 5     private RecordAppendResult tryAppend(long timestamp, byte[] key, byte[] value, Callback callback, Deque deque) {
 6         RecordBatch last = deque.peekLast();
 7         if (last != null) {
 8             FutureRecordMetadata future = last.tryAppend(timestamp, key, value, callback, time.milliseconds());
 9             if (future == null)
10                 last.records.close();
11             else
12                 return new RecordAppendResult(future, deque.size() > 1 || last.records.isFull(), false);
13         }
14         return null;
15     }

如上图,最终还是调用的tryAppend(timestamp, key, value, callback, time.milliseconds());追踪:

 1 /**
 2      * Append the record to the current record set and return the relative offset within that record set
 3      * 
 4      * @return The RecordSend corresponding to this record or null if there isn't sufficient room.
 5      */
 6     public FutureRecordMetadata tryAppend(long timestamp, byte[] key, byte[] value, Callback callback, long now) {
 7         if (!this.records.hasRoomFor(key, value)) {
 8             return null;
 9         } else {
10             long checksum = this.records.append(offsetCounter++, timestamp, key, value);
11             this.maxRecordSize = Math.max(this.maxRecordSize, Record.recordSize(key, value));
12             this.lastAppendTime = now;
13             FutureRecordMetadata future = new FutureRecordMetadata(this.produceFuture, this.recordCount,
14                                                                    timestamp, checksum,
15                                                                    key == null ? -1 : key.length,
16                                                                    value == null ? -1 : value.length);
17             if (callback != null)
18                 thunks.add(new Thunk(callback, future));
19             this.recordCount++;
20             return future;
21         }
22     }

如上图,append实际就是往RecordBatchMemoryRecords(封装了ByteBuffer等信息)中添加当前record。返回一个FutureRecordMetadata

最终封装成RecordAppendResult 返回,至此完成了往累加器accumulator中添加一条record。

再次回归到KafkaTemplete生产者模板发送消息时doSend方法,当KafkaProducer.send发送消息完毕时,如果设置了自动刷新,则执行KafkaProducer.flush()

 1 @Override
 2     public void flush() {
 3         log.trace("Flushing accumulated records in producer.");
 4         this.accumulator.beginFlush();
 5         this.sender.wakeup();
 6         try {
 7             this.accumulator.awaitFlushCompletion();
 8         } catch (InterruptedException e) {
 9             throw new InterruptException("Flush interrupted.", e);
10         }
11     }

KafkaProducer.flush()==》accumulator.awaitFlushCompletion()==》RecordBatch.produceFuture.await()

 1 /**
 2      * Mark all partitions as ready to send and block until the send is complete
 3      */
 4     public void awaitFlushCompletion() throws InterruptedException {
 5         try {
 6             for (RecordBatch batch : this.incomplete.all())
 7                 batch.produceFuture.await();
 8         } finally {
 9             this.flushesInProgress.decrementAndGet();
10         }
11     }
1 private final CountDownLatch latch = new CountDownLatch(1);
2 
3 /**
4      * Await the completion of this request
5      */
6     public void await() throws InterruptedException {
7         latch.await();
8     }

如上图,awaitFlushCompletion遍历未完成的RecordBatchProduceRequestResult (生产请求结果)用一个倒计数器(1个任务)等待完成。

 四、总结

本章,我们结合流程图从kafaTemplete入手分析了kafka生产者发送消息的主要源码,现在看来主要就两个模块,一个是存储数据进累加器缓存,第二个是发送器 netty NIO发送消息。我们发现生产者发送消息源码并不复杂。下一章,讲解消费者源码。

你可能感兴趣的:(kafka原理和实践(三)spring-kafka生产者源码)