Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影

学习python时,爬虫是一种简单上手的方式,应该也是一个必经阶段。本项目用Scrapy框架实现了抓取豆瓣top250电影,并将图片及其它信息保存下来。爬取豆瓣top250电影不需要登录、没有JS解析、而且只有10页内容,用来练手,太合适不过了。

我的开发环境

  • WIN10 64位系统
  • Python 3.6.1
  • PyCharm、Sublime Text
  • Mysql、MongoDB,可视化:DbVisualizer、Robomongo

项目目录

Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影_第1张图片
项目目录
  • spiders/sp_douban.py:处理链接,解析item部分
  • items.py:豆瓣top250电影字段
  • middlewares.py、user_agents.py:从维护的UserAgent池中随机选取
  • settings.py:配置文件
  • main.py:免去在命令行输入运行指令

页面抓取内容分析

入口地址:https://movie.douban.com/top250

Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影_第2张图片
内容区
Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影_第3张图片
span内容

如图所示,抓取信息对应如下:

class DoubanTopMoviesItem(scrapy.Item):
    title_ch = scrapy.Field()     # 中文标题
    # title_en = scrapy.Field()   # 外文名字
    # title_ht = scrapy.Field()   # 港台名字
    # detail = scrapy.Field()     # 导演主演等信息
    rating_num = scrapy.Field()   # 分值
    rating_count = scrapy.Field() # 评论人数
    # quote = scrapy.Field()      # 短评
    image_urls = scrapy.Field()   # 封面图片地址
    topid = scrapy.Field()        # 排名序号

用xpath取出对应路径,进行必要的清洗,去除空格等多余内容:

item['title_ch'] = response.xpath('//div[@class="hd"]//span[@class="title"][1]/text()').extract()
en_list = response.xpath('//div[@class="hd"]//span[@class="title"][2]/text()').extract()
item['title_en'] = [en.replace('\xa0/\xa0','').replace('  ','') for en in en_list]
ht_list = response.xpath('//div[@class="hd"]//span[@class="other"]/text()').extract()
item['title_ht'] = [ht.replace('\xa0/\xa0','').replace('  ','') for ht in ht_list]
detail_list = response.xpath('//div[@class="bd"]/p[1]/text()').extract()
item['detail'] = [detail.replace('  ', '').replace('\xa0', '').replace('\n', '') for detail in detail_list]
# 注意:有的电影没有quote!!!!!!!!!!
item['quote'] = response.xpath('//span[@class="inq"]/text()').extract()
item['rating_num'] = response.xpath('//div[@class="star"]/span[2]/text()').extract()
# 评价数格式:“XXX人评价”。用正则表达式只需取出XXX数字
count_list = response.xpath('//div[@class="star"]/span[4]/text()').extract()
item['rating_count'] = [re.findall('\d+',count)[0] for count in count_list]
item['image_urls'] = response.xpath('//div[@class="pic"]/a/img/@src').extract()
item['topid'] = response.xpath('//div[@class="pic"]/em/text()').extract()

爬取链接的三种方式

第二页的链接格式是:https://movie.douban.com/top250?start=25&filter= ,每页25部电影,所以翻页就是依次加25

  1. 重写start_requests方法
base_url = "https://movie.douban.com/top250"
# 共有10页,格式固定。重写start_requests方法,等价于start_urls及翻页
def start_requests(self):
    for i in range(0, 226, 25):
        url = self.base_url + "?start=%d&filter=" % i
        yield scrapy.Request(url, callback=self.parse)
  1. 初始start_urls加当前页的下一页
base_url = "https://movie.douban.com/top250"
start_urls = [base_url]
# 取下一页链接,继续爬取
new_url = response.xpath('//link[@rel="next"]/@href').extract_first()
if new_url:
    next_url = self.base_url+new_url
    yield scrapy.Request(next_url, callback=self.parse)
  1. 初始start_urls加LinkExtractor 链接提取器方法
# 这个方法需要较大调整(引入更多模块、类继承CrawlSpider、方法命名不能是parse)
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor

base_url = "https://movie.douban.com/top250"
start_urls = [base_url]
rules = [Rule(LinkExtractor(allow=(r'https://movie.douban.com/top250\?start=\d+.*')),
                   callback='parse_item', follow=True)
              ]

下载及保存内容

综合其他人的教程,本项目集成了多种保存方法,包括保存电影封面至本地、存入MYSQL、存入MONGODB。在settings里配置了ITEM_PIPELINES,用到那种方式,就把注释去掉即可。

  1. 自定义下载图片方法

    Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影_第4张图片
    图片效果
    # 自定义方法下载图片
    class FirsttestPipeline(object):
        # 电影封面命名:序号加电影名
        def _createmovieImageName(self, item):
            lengh = len(item['topid'])
            return [item['topid'][i] + "-" + item['title_ch'][i] + ".jpg" for i in range(lengh)]
    
        # 另一种命名法,取图片链接中名字
        # def _createImagenameByURL(self, image_url):
        #     file_name = image_url.split('/')[-1]
        #     return file_name
    
        def process_item(self, item, spider):
            namelist = self._createmovieImageName(item)
            dir_path = '%s/%s' % (settings.IMAGES_STORE, spider.name)
            # print('dir_path', dir_path)
            if not os.path.exists(dir_path):
                os.makedirs(dir_path)
            for i in range(len(namelist)):
                image_url = item['image_urls'][i]
                file_name = namelist[i]
                file_path = '%s/%s' % (dir_path, file_name)
                if os.path.exists(file_path):
                    print("重复,跳过:" + image_url)
                    continue
                with open(file_path, 'wb') as file_writer:
                    print("正在下载:"+image_url)
                    conn = urllib.request.urlopen(image_url)
                    file_writer.write(conn.read())
                file_writer.close()
            return item
    
  1. 保存内容至MYSQL数据库

    前提是装好mysql,这部分请自行解决。本项目建表语句:

    CREATE TABLE DOUBANTOPMOVIE (
      topid int(3) PRIMARY KEY ,
      title_ch VARCHAR(50) ,
      rating_num FLOAT(1),
      rating_count INT(9),
      quote VARCHAR(100),
      createdTime TIMESTAMP(6) not NULL DEFAULT CURRENT_TIMESTAMP(6),
      updatedTime TIMESTAMP(6) not NULL DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
    ) ENGINE=MyISAM DEFAULT CHARSET=utf8;
    

    具体实现方法:

    # 保存内容至MYSQL数据库
    class DoubanmoviePipeline(object):
        def __init__(self, dbpool):
            self.dbpool = dbpool
    
        @classmethod
        def from_settings(cls, settings):
            dbparams = dict(
                host=settings['MYSQL_HOST'],
                port=settings['MYSQL_PORT'],
                db=settings['MYSQL_DBNAME'],
                user=settings['MYSQL_USER'],
                passwd=settings['MYSQL_PASSWD'],
                charset=settings['MYSQL_CHARSET'],
                cursorclass=MySQLdb.cursors.DictCursor,
                use_unicode=False,
            )
            dbpool = adbapi.ConnectionPool('MySQLdb', **dbparams)  # **表示将字典扩展为关键字参数
            return cls(dbpool)
    
        # pipeline默认调用
        def process_item(self, item, spider):
            # 调用插入的方法
            query=self.dbpool.runInteraction(self._conditional_insert,item)
            # 调用异常处理方法
            query.addErrback(self._handle_error,item,spider)
            return item
    
        def _conditional_insert(self, tx, item):
            sql = "insert into doubantopmovie(topid,title_ch,rating_num,rating_count) values(%s,%s,%s,%s)"
            lengh = len(item['topid'])
            for i in range(lengh):
                params = (item["topid"][i], item["title_ch"][i], item["rating_num"][i], item["rating_count"][i])
                tx.execute(sql, params)
    
        def _handle_error(self, e):
            print(e)
    
  1. 保存内容至MONGODB数据库

    前提是装好mongodb,这部分请自行解决。可视化工具推荐Robomongo,本项目保存结果及实现方法:

    Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影_第5张图片
    mongodb截图
    # 保存内容至MONGODB数据库
    class MongoDBPipeline( object):
        mongo_uri_no_auth = 'mongodb://localhost:27017/' # 没有账号密码验证
        database_name = 'yun'
        table_name = 'coll'
        client = MongoClient(mongo_uri_no_auth)  # 创建了与mongodb的连接
        db = client[database_name]
        table = db[table_name]  # 获取数据库中表的游标
    
        def process_item(self, item, spider):
            valid = True
            for data in item:
              if not data:
                  valid = False
                  raise DropItem("Missing {0}!".format(data))
            if valid:
                  self.table.insert(dict(item))
            return item
    
  2. 用内置的ImagesPipeline类下载图片

    Scrapy自带的ImagesPipeline 实现起来也很简单。不过,比较下来,速度不及自定义的方法,不知是否哪里写的不对。若有高手发现,欢迎指出原因。

    from scrapy.contrib.pipeline.images import ImagesPipeline
    from scrapy.http import Request
    from scrapy.exceptions import DropItem
    
    # 用Scrapy内置的ImagesPipeline类下载图片
    class MyImagesPipeline(ImagesPipeline):
        def file_path(self, request, response=None, info=None):
            image_name = request.url.split('/')[-1]
            return 'doubanmovie2/%s' % (image_name)
    
        # 从item获取url,返回request对象给pipeline处理
        def get_media_requests(self, item, info):
            for image_url in item['image_urls']:
                yield Request(image_url)
    
        # pipeline处理request对象,完成下载后,将results传给item_completed
        def item_completed(self, results, item, info):
            image_paths = [x['path'] for ok, x in results if ok]
            # print(image_paths)
            if not image_paths:
                raise DropItem("Item contains no images")
            # item['image_paths'] = image_paths
            return item
    

其它

from scrapy.selector import Selector
Selector(response).xpath('//span/text()').extract()
# 等价于下面写法:
response.selector.xpath('//span/text()').extract() # .selector 是response对象的属性
# 也等价于下面写法(进一步简化):
response.xpath('//span/text()').extract()

完整项目代码见Github

觉得对你有所帮助的话,给个star ​吧

你可能感兴趣的:(Python爬虫之Scrapy+Mysql+Mongodb爬豆瓣top250电影)