(Boolan) C++ STL与泛型编程——算法、仿函数、Adapter

之前已经完成了STL中容器的梳理,那么从语言的层面来看:

  • 容器是class template
  • 算法是function template
  • 迭代器是class template
  • 适配器是class template
  • 分配器是class template

一般STL中的算法都是如下的两种形式(Algorithm代表一种泛指,可以替代其他的函数名称)

template
Algorithm (Iterator itr1, Iterator itr2)
{
    ..........
}

template
Algorithm (Iterator itr1, Iterator itr2, Cmp comp)
{
    ..........
}

对于Algorithms来说,是不能直接看到Container的,对他的情况可谓一无所知。那么,他所需要的一切信息就必须要通过他们之间桥梁Iterators来获得了。然而Iterators(是由Container所提供的)必须能够回答Algorithms所提出的一些问题(比如类型等),才能够搭配对应的Algorithm的所有操作。

所谓算法的所提出的问题,其hi就是类型的确认过程,通过确认,来获取他所需要的,例如标记了五种iterator categories的类型

//5种iterator categories
struct input_iterator_tag{};
//

struct output_iterator_tag{};
//

struct forward_iterator_tag : public input_iterator_tag{};
//forward_list是单向链表

struct bidirectional_iterator_tag : public forward_iterator_tag{};
//list,rb_tree为底层的set,multiset、map、multimap是双向链表,iterator不能随机跳跃

struct random_access_iterator_tag : public bidirectional_iterator_tag{};
//对于连续空间的array、vector、deque
(虽然实际上不连续,但是iterator构造了连续的假象)
,这些迭代器可以随便跳跃的类型
(Boolan) C++ STL与泛型编程——算法、仿函数、Adapter_第1张图片
iterator categories的UML

这样设计的优势是在于,通过对象的方式就可以调用不同函数的重载,例如:

void _display_category(random_access_iterator_tag){
    cout << "random_access_iterator" << endl;
}

void _display_category(bidirectional_iterator_tag){
    cout << "bidirectional_iterator" << endl;
}

void _display_category(forward_iterator_tag){
    cout << "forward_iterator" << endl;
}

void _display_category(input_iterator_tag){
    cout << "input_iterator" << endl;
}

void _display_category(output_iterator_tag){
    cout << "output_iterator" << endl;
}

template
void display_category(I iter){
    typename iterator_traits::iterator_category cagy;
    _display_category(cagy);
    //根据对象类型,可以调用不同的函数重载
}

//.........
{
    //通过iterator的临时对象来作为参数调用
    display_category(set::iterator());
}
  • istream_iterator 的iterator_category
    gnu2.9里面的istream_iterator
template 
class istream_iterator{
public:
      typedef input_iterator_tag iterator_category;
//      ............
};

gnu 3.3里面的istream_iterator

template,
         class _Dist = ptrdiff_t>
class istream_iterator{
public:
    typedef input_iterator_tag iterator_category;
}

Gnu4.9里面的istream_iterator

template
struct iterator{
      typedef _Category iterator_category;
      typedef _Tp       value_type;
      typedef _Distance difference_type;
      typedef _Pointer  pointer;
      typedef _Reference reference;
}

template,
      typename _Dist = ptrdiff_t>
class istream_iterator: public iterator
{...........}
  • ostream_iterator 的iterator_category
    gnu2.9里面的ostream_iterator
template 
class ostream_iterator{
public:
      typedef output_iterator_tag iterator_category;
//      ............
};

gnu 3.3里面的ostream_iterator

template,
         class _Dist = ptrdiff_t>
class ostream_iterator{
public:
    typedef output_iterator_tag iterator_category;
}

Gnu4.9里面的ostream_iterator

template
struct iterator{
      typedef _Category iterator_category;
      typedef _Tp       value_type;
      typedef _Distance difference_type;
      typedef _Pointer  pointer;
      typedef _Reference reference;
}

template,
      typename _Dist = ptrdiff_t>
class ostream_iterator: public iterator
{...........}
  • iterator_category对算法的影响
template
inline iterator_trais::diference_type __distance(InputIterator first, InputIterator last, input_iterator_tag){
//input_iterator_tag是forward_iteator_tag和bidirectional_iterator_tag的父类,
//所以遇到了会直接进入input_iterator_tag的重载部分
      iterator_trais::difference_type n = 0;
      //由于不是RandomAccessIterator,所以迭代器不能直接相减,需要遍历了
      while(first != last){
          ++first;
          ++n;
      }
      return n;
}

template
inline iterator_trais::difference_type __distance(RandomAccessIterator first, RandomAccessIterator last, random_access_iterator_tag){
      return last - first;
      //只有连续空间才能迭代器想减
}

template
inline iterator_trais::difference_type distance(InputIterator first, InputIterator last){
      //根据trais获取iterator的category tag,如果编译不通过说明迭代器出问题
      typedef typename iterator_trais::iterator_category category;
      return __distance(first, last, category());
      //根据第三参数调用了不同的函数重载
}

以copy()函数为例,说明STL算法设计的思路,针对不同的类型的Iterator进行了详细的区分和判断,选择最高效的方法来赋值需要复制的内容

(Boolan) C++ STL与泛型编程——算法、仿函数、Adapter_第2张图片
copy函数对于不同的类型的判断流程
destroy函数对于不同类型的判断流程

算法的效率与他是否能够判断出iterator的分类很重要。
算法源码中,对于iterator_category都是采用“暗示”的方式,因为算法主要为模版函数,而模版函数可以传入任何的类型,所以只是定义模版的时候定义为需要的迭代器名字,但并不是真正的区分类型。如果传入的类型不正确,编译会不通过,采用这样的方式来区分iterator的类型

部分算法源码剖析

  • c语言的算法函数样例
qsort(c.data(), ASIZE, sizeof(long), compareLongs);

long* pItem = (long*) bsearsh(&target, (c.data()), ASIZE, sizeof(long), compareLongs);
  • C++标准库的函数样例
template
std::Algorithm (Iterator itr1, Iterator itr2)
{
    ..........
}

template
std::Algorithm (Iterator itr1, Iterator itr2, Cmp comp)
{
    ..........
}
  • 算法accumulate
template 
T accumulate(InputIterator first, InputIterator last, T init)
{
      for( ; first != last; ++first)
      {
              //将元素累加至初值init上
              init = init + *first;
      }

      return init;
}

template 
T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation binary_op)
{
        for( ; first != last; ++first)
        {
              //对元素“累加计算(具体算法可以通过传入一个函数指针或者函数对象来指定)”至初值init上
              init = binary_op(init, *first);
        }
        return init;
}

用例

int myfunc(int x, int y){return x + 2 * y;}//一般的函数

struct myclass{
      int operator()(int x, int y){return x + 3 * y; }
} myobj;  //函数对象(仿函数)

void test
{
    int init = 100;
    int nums[] = {10, 20, 30};
    
    accmulate(nums, num + 3, init);  //160

    accumulate(nums, num + 3, init, minus);    //使用了stl的相减的函数  40

    accumulate(nums, num + 3, init, myfunc);  //220

    accumulate(nums, num + 3, init, myobj);  //280
}
  • 算法for_each
template 
Function for_each(InputIterator first, InputIterator last, Function f)
{
      for( ; first != last; ++first)
      {
            f(*first);
      }
      return f;
}

用例

void mufunc(int i){
      cout << ' ' << i;
}

typedef struct myclass{
        void operator() (int i){
              cout << ' ' << i;
        }
}  myobj;

void test()
{
      vector myvec;
      myvec.push_back(10);
      ...........
      for_each(myvec.begin(), myvec.end(), myfunc);//循环调用自定义函数
      for_each(myvec.begin(), myvec.end(), myobj);//循环调用仿函数(函数对象)
}
  • 算法replace,replace_if , replace_copy
template
void replace(ForwardIterator first, ForwardIterator last, const T& old_value, const T& new_value)
{
      //范围内所有等同于old_value者都以new_value取代
      for( ; first != last; ++first){
            if(*first == old_value)
                *first = new_value;
      }
}

template
void replace_if(ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value)
{
        //范围内所有满足pred()为true的元素都以new_value取代
        for( ; first != last; ++ first)
            if(pred(*first))
                  *first = new_value;
}

template
OutputIterator replace_copy(InputIteator first, InputIterator last, OutputIterator result, const T& new_value, const T& old_value)
{
      //范围内所有等同于old_value者,都以new_value防止新的区间
      //不符合者原值放入新区间
      for( ; first != last; ++first, ++ result)
            *result = *first == old_value? new_value: *first;

        return result;
}
  • 算法count, count_if
template
typename iterator_traits::difference_type count(InputIterator first, InputIterator last, const T& value){
        //以下定义一个初值为0的计数器n
        typename iterator_traits::difference_type n = 0;
      for( ; first != last; ++first)
             if(*first == value)
                    ++n;
      return n;
}

template
typename iterator_traits::difference_type count_if(InputIterator first, InputIterator last, Predicate pred){
      //以下定义一个初值为0的计数器n
      typename iterator_traits::difference_type n = 0;
      for( ; first != last; ++first)
            if(pred(*first)
                ++n;
      return n;
}

容器不带成员数count():array、vector、list、forward_list、deque
容器
带有*成员函数count():set、multiset、map、multimap、unordered_set、unordered_multiset、unordered_map、unordered_multimap

容器自带count的应该使用自己所带有的count效率较高,而不在容器内的count函数实际是泛化版本,相对效率较低

因为hashtable 和rb_tree是具有自己严谨的结构,所以有自己的count成员函数

  • 算法find、find_if
template 
InputIterator find (InputIterator first, InputIterator last, const T& value)
{
        while(first != last && *first != value)
              ++first;
        return first;
}

template
InputIterator find_if(InputIterator first, InputIterator last, Predicate pred)
{
      while(first != last && !pred(*first))
              ++first;
      return firstl
}

容器不带成员数find():array、vector、list、forward_list、deque
容器
带有*成员函数count():set、multiset、map、multimap、unordered_set、unordered_multiset、unordered_map、unordered_multimap

容器自带find的应该使用自己所带有的find效率较高,而不在容器内的count函数实际是泛化版本,相对效率较低

因为hashtable 和rb_tree是具有自己严谨的结构,所以有自己的find成员函数

  • 算法sort

容器不带成员函数sort():array、vector、deque、set、multiset、map、multimap、unordered_set、unordered_multiset、unordered_map、unordered_multimap

关联式容器本身就已经完成了排序的任务,所以他没有sort的成员函数

容器带有成员函数sort
list、forward_list

泛化的sort需要传入的是RandomAccessIterator才能够排序,对于list和forward_list的迭代器并不是,如果他们使用泛化的sort会无法通过编译

仿函数functors

//算术类(Arithmetic)
template
struct plus:public binary_function
{
      T operator()(const T& x, const T& y) const { return x + y; }
};

template
struct minus: public binary_function
{
      T operator() (const T& x, const T& y)const
      {
              return x - y;
      }
};
//逻辑运算类(Logical)
template
struct logical_and : public binary_function{
      bool operator() (const T& x, const T& y) const { return x && y; }
};
//相对关系类(比大小 Relational)
template
struct equal_to : public binary_function{
      bool operator()(const T& x, const T& y) const { return x == y; }
};

template
struct less: public binary_function{
      bool operator() (const T& x, const T& y) const { return x < y; }
}
//GNU 独有非标准
template
struct identity: public unary_function{
    const T& operator() (const T& x) const {return x;}
};

template
struct select1st: public unary_function{
      const typename Pair::first_type& operator() (const Pair& x) const{
            return x.first;
      }
}

template
struct select2nd: public unary_function{
      const typename Pair::second_type& operator() (const Pair& x) const {
          return x.second;
    }
}

template 
struct pair{
      typedef T1 first_type;
      typedef T2 second_type;

      T1 first;
      T2 second;
      pair() : first(T1()), second(T2()){}
      pair(const T1& a, const T2& b):first(a),
 second(b){}    
};

目的是为了将这些操作的方法传给算法来使用,所以必须是定义函数或者是定义仿函数的方式来实现

每个标准库所提供的仿函数都有继承关系,“binary_function”和“unary_function”如果不继承,那么标准库对于functors的要求就么有达到

template
struct unary_function{
      typedef Arg argument_type;
      typedef Result result_type;
};

template
struct binary_function{
      typedef Arg1 first_argument_type;
      typedef Arg2 second_argument_type;
      typedef Result result_type;
}

以上两个类,理论大小为0,实际应该为1,但是当他作为父类的时候,他所占的空间的大小为0

stl规定,每个Adaptable Function都应该挑选上面的两个类进行继承,如果不继承,将不具备adaptable的条件,方便Adapter获取到其中的typedef的一些类型名称,以便获取到相关的模版类型。

仿函数,实际就是class、struct重载()操作符,实际对象就可以像函数一样使用

存在多种Adapter

  • 容器适配器 stack、queue
template >
class stack{
//.......
public:
      typedef typename Squence::value_type value_type;
      typedef typename Squence::size_type size_type;
      typedef typename Squence::reference reference;
      typedef typename Squence::const_reference const_reference;
protected:
      Sequence c;  //底层容器
public:
      bool empty() const {return c.empty();}
      size_type size() const {return c.size();}
      reference top() {return c.back();}
      const_reference top() const {return c.back();}
      void push (const value_type& x) { c.push_back(x);}
      void pop() {c.pop_back();}
}

template  >
class queue{
//.............
public:
      typedef typename Squence::value_type value_type;
      typedef typename Squence::size_type size_type;
      typedef typename Squence::reference reference;
      typedef typename Squence::const_reference const_reference;
protected:
      Sequence c;  //底层容器
public:
      bool empty() const {return c.empty();}
      size_type size() const {return c.size();}
      reference front() {return c.front();}
      const_reference front() const {return c.front();}
      reference back() {return c.back();}
      const_reference back() const {return c.back();}
      void push (const value_type& x) { c.push_back(x);}
      void pop() {c.pop_front();}
}
  • 函数适配器(Function Adapter)binder2nd
cout << count_if(vi.begin(), vi.end(), bind2nd(less(), 40);
//辅助函数,让使用者方便使用binder2nd
//编译器自动推到Op的type
template
inline binder2nd bind2nd(const Operation& op, const T& x){
        typedef typename Operation::second_argument_type arg2_type;//封装模版传入的类型
        return binder2nd(op, arg2_type(x));//通过return-by-value的形式,返回了binder2nd值
}

//将够格Adaptable Binary Function 转换为Unary Function 
template
class binder2nd: public unary_function
//count_if的代码
template 
typename iterator_traits::difference_type count_if(InputIterator first, InputIterator last, Predicate pred){
      //以下定义一个取初值为0的计数器
      typename iterator_traits::differece_type n = 0;
      for( ; first != last; ++first)  //遍历
            if(pred(*first))  //如果元素带入pred的结果为true  
            //实际
                ++n;
}

注:模版参数Operation,其中定义有类型为
typename Operation::second_argment_type value;
,对于示例中的操作传入的是是less的,其中,如果查看之前的所写的内容,可以看到less的代码,less继承了binary_function,而在binary_function中仅仅定义了几个typedef而已,正好方便确认模版参数的类型

//less的代码
template
struct less: public binary_function{  //继承了binary_function
      bool operator() (const T& x, const T& y) const { return x < y; }
}
//binary_function和unary_function的代码
template
struct unary_function{
      typedef Arg argument_type;
      typedef Result result_type;
};
>
template
struct binary_function{
      typedef Arg1 first_argument_type;
      typedef Arg2 second_argument_type;
      typedef Result result_type;
}

随着发展,现在的stl也发生了一些变化,接下来我们来看看变化的情况:

| 最新 | 以前 |
| ------------- |: -----:|
| , basic_stringbuf| , strstreambuf|
| , basic_istringstream| , istrstream|
|, basic_ostringstream | , ostrstream|
|, basic_stringstream|, strstream|
| , hash_set|
|, unordered_multiset| , hash_multiset|
|, unordered_map| , hash_map|
|, unordered_multimap| , hash_multimap|
|, bind| , binder1st|
|, bind| , binder2nd|
|, bind| , bind1st|
|, bind| , bind2nd|
|, unique_ptr| , auto_ptr|

  • not1
//使用
cout << count_if(vi.begin(), vi.end(), not1(bind2nd(less(), 40); 
template
inline unary_negatenot1(const Predicate& pred){
      return unary_negate(pred);
}

template
class unary_negate:public unary_function{
protected:
    Predicate pred;    //内部成员
public:
    explicit unary)negate(const Predicate& x): pred(x){}
    bool operator()(const typename Predicate::argument_type& x) const{
        return !pred(x);
    }
}
template
typename iterator_traits::difference_type count_if(InputIterator first, InputIterator last, Predicate pred){
        typename iterator_traits::difference_ytpe n = 0;
      for( ; first != last; ++first)
              if(pred(*first))
                  ++n;
      return n;
}
  • bind

std::bind可以绑定:
1 functions
2 function objects
3 member functions: 必须是某个object地址
4 data members:必须是某个object的弟子,返回一个Function object ret, 调用ret相当于上述1 2 3 或相当于取出4

#include      // std::cout
#include    // std::bind

// a function: (also works with function object: std::divides my_divide;)
double my_divide (double x, double y) {return x/y;}

struct MyPair {
  double a,b;
  double multiply() {return a*b;}
};

int main () {
  using namespace std::placeholders;    // adds visibility of _1, _2, _3,...

  // binding functions:
  auto fn_five = std::bind (my_divide,10,2);               // returns 10/2
  std::cout << fn_five() << '\n';                          // 5

  auto fn_half = std::bind (my_divide,_1,2);               // returns x/2
  std::cout << fn_half(10) << '\n';                        // 5

  auto fn_invert = std::bind (my_divide,_2,_1);            // returns y/x
  std::cout << fn_invert(10,2) << '\n';                    // 0.2

  auto fn_rounding = std::bind (my_divide,_1,_2);     // returns int(x/y)
  std::cout << fn_rounding(10,3) << '\n';                  // 3

  MyPair ten_two {10,2};

  // binding members:
  auto bound_member_fn = std::bind (&MyPair::multiply,_1); // returns x.multiply()
  std::cout << bound_member_fn(ten_two) << '\n';           // 20

  auto bound_member_data = std::bind (&MyPair::a,ten_two); // returns ten_two.a
  std::cout << bound_member_data() << '\n';                // 10

  return 0;
}

关于bind的原理较为复杂,在这里就不做详细的分析了,但是可以给出两个参考文章,来说明bind的实现原理
std::bind技术内幕
std bind 原理简单图解

  • reverse_iterator
template
class reverse_iterator{
protected:
    Iterator current;
public:
    typedef typename iterator_traits::iterator_category iterator_category;
    typedef typename iterator_traits::iterator_type iterator_type;
//.........
    typedef Iterator iterator_type;
    typedef reverse_iterator self;
public:
    explicit reverse_iterator(iterator_type x):current(x){}
    reverse_iterator(const self& x):current(x.current){}
    iterator_type base() const{return current;}
    reference operator*() const {Iterator tmp = current; return *--tmp;}
    pointer operator->() const {return &(operator*();}
    self& operator++() {--current; return *this;}
    self& operator--(){ ++current; return *this;}
    self operator+(difference_type n) const {return self(current - n); }
    self operator-(difference_type n) const {return self(current + n); }
}
  • 迭代器适配器:inserter
//copy
template
OutputIterator copy (InputIterator first, InputIterator last, OutputIterator result){
      while(first != last){
            *result = * first;
            ++result;
            ++first;
      }
      return result;
}
//copy的一般使用
int myints[] = {10, 20, 30, 40, 50, 60, 70};
vector myvec(7);
copy(myints, myints + 7 , myvec.begin());
(Boolan) C++ STL与泛型编程——算法、仿函数、Adapter_第3张图片
copy
希望copy的结果
list foo, bar;
for(int i = 1; i <= 5; i++){
    foo.push_back(i);
    bar.push_back(i * 10);
}
list::iterator it = foo.begin();
advance (it, 3);

copy(bar.begin(), bar.end(), insert(foo, it));
template
class insert_iterator{
protected:
      Container* container;
      typename Container::iterator iter;
public:
      typedef output_iterator_tag iterator_category;
      insert_iterator(Container& x, typename Container::iterator):container(&x), iter(i){}
      insert_iterator& operator= (const typename Container::value_type& value){
            iter = container->insert(iter, value);
            ++iter;
            return *this;
      }
};

template 
inline insert_iterator inserter(Container& x, Iterator i){
      typedef typename Container::iterator iter;
     return insert_iterator(x, iter(i));
}

注:在copy中,第三参数,传入了一个inserter函数的执行结果后,*result = *first;的代码的result实际就是insert_iterator对象,这个对象中重载了=操作符,在result指向=时,就会调用重载的操作符,以实现,拷贝的同时还在移动原集合的内容

  • ostream_iterator
//用例
#include      // std::cout
#include      // std::ostream_iterator
#include        // std::vector
#include     // std::copy

int main () {
  std::vector myvector;
  for (int i=1; i<10; ++i) myvector.push_back(i*10);

  std::ostream_iterator out_it (std::cout,", ");
  std::copy ( myvector.begin(), myvector.end(), out_it );
  return 0;
}
//实现代码
template  >
  class ostream_iterator :
    public iterator
{
  basic_ostream* out_stream;
  const charT* delim;

public:
  typedef charT char_type;
  typedef traits traits_type;
  typedef basic_ostream ostream_type;
  ostream_iterator(ostream_type& s) : out_stream(&s), delim(0) {}
  ostream_iterator(ostream_type& s, const charT* delimiter)
    : out_stream(&s), delim(delimiter) { }
  ostream_iterator(const ostream_iterator& x)
    : out_stream(x.out_stream), delim(x.delim) {}
  ~ostream_iterator() {}

  ostream_iterator& operator= (const T& value) {
    *out_stream << value;
    if (delim!=0) *out_stream << delim;
    return *this;
  }

  ostream_iterator& operator*() { return *this; }
  ostream_iterator& operator++() { return *this; }
  ostream_iterator& operator++(int) { return *this; }
};
  • istream_iterator
//用例
#include      // std::cin, std::cout
#include      // std::istream_iterator

int main () {
  double value1, value2;
  std::cout << "Please, insert two values: ";

  std::istream_iterator eos;              // end-of-stream iterator
  std::istream_iterator iit (std::cin);   // stdin iterator

  if (iit!=eos) value1=*iit;

  ++iit;
  if (iit!=eos) value2=*iit;

  std::cout << value1 << "*" << value2 << "=" << (value1*value2) << '\n';

  return 0;
}
//实现代码
template , class Distance=ptrdiff_t>
  class istream_iterator :
    public iterator
{
  basic_istream* in_stream;
  T value;

public:
  typedef charT char_type;
  typedef traits traits_type;
  typedef basic_istream istream_type;
  istream_iterator() : in_stream(0) {}
  istream_iterator(istream_type& s) : in_stream(&s) { ++*this; }
  istream_iterator(const istream_iterator& x)
    : in_stream(x.in_stream), value(x.value) {}
  ~istream_iterator() {}

  const T& operator*() const { return value; }
  const T* operator->() const { return &value; }
  istream_iterator& operator++() {
    if (in_stream && !(*in_stream >> value)) in_stream=0;
    return *this;
  }
  istream_iterator operator++(int) {
    istream_iterator tmp = *this;
    ++*this;
    return tmp;
  }
};

你可能感兴趣的:((Boolan) C++ STL与泛型编程——算法、仿函数、Adapter)