- python transformers库笔记(BertForTokenClassification类)
夏末蝉未鸣01
自然语言处理pythontransformer自然语言处理
BertForTokenClassification类BertForTokenclassification类是HuggingFacetransformers库中专门为基于BERT的序列标注任务(如命名实体识别NER、词性标注POS)设计的模型类。它在BERT的基础上添加了一个线性分类层,用于对每个token进行分类。1、特点任务类型:专为Token-level分类设计,即对输入序列中的每一个tok
- 信息抽取数据集全景分析:分类体系、技术演进与挑战_DEEPSEEK
致Great
分类数据挖掘人工智能
信息抽取数据集全景分析:分类体系、技术演进与挑战摘要信息抽取(IE)作为自然语言处理的核心任务,是构建知识图谱、支持智能问答等应用的基础。近年来,随着深度学习技术的发展和大规模预训练模型的兴起,IE数据集呈现爆发式增长,其分析与评估对模型研发和领域迁移至关重要。本文基于对158个主流IE数据集的系统性梳理,首次提出“信息提取与命名实体识别数据集分类体系”。该体系涵盖8大类别(命名实体识别、关系提取
- BERT-NER-Pytorch 深度学习教程
富茉钰Ida
BERT-NER-Pytorch深度学习教程BERT-NER-PytorchChineseNER(NamedEntityRecognition)usingBERT(Softmax,CRF,Span)项目地址:https://gitcode.com/gh_mirrors/be/BERT-NER-Pytorch1.项目介绍BERT-NER-Pytorch是一个基于PyTorch实现的中文命名实体识别(
- 使用 Python 构建知识图谱(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程Python源码大全python知识图谱开发语言
介绍这篇文章概述了使用Python构建知识图谱的全面方法,重点介绍文本分析技术,例如命名实体识别(NER)、句法分析和关系提取。它详细介绍了清理和预处理文本、识别关键实体及其关系以及将数据可视化为结构化图的过程。该方法利用Spacy等库进行NER和大型语言模型(LLM)进行关系提取。该文档还提供了用于实现这些技术的代码片段和示例,强调了事件检测和共现分析在生成富有洞察力的知识图谱方面的重要性。最后
- 《Python自然语言处理(第二版)-Steven Bird等》学习笔记:第02章 获得文本语料和词汇资源
miniAI学堂
2015年度Python自然语言处理语料库中文资源
第02章获得文本语料和词汇资源2.1获取文本语料库古腾堡语料库网络和聊天文本布朗语料库路透社语料库就职演说语料库标注文本语料库在其他语言的语料库文本语料库的结构载入你自己的语料库中文自然语言处理语料/数据集情感/观点/评论倾向性分析中文命名实体识别推荐系统2.2条件频率分布条件和事件按文体计数词汇绘制分布图和分布表使用双连词生成随机文本2.3更多关于Python代码重用使用文本编辑器创建程序函数模
- 规范化信息抽取:原理流程与Python实战
闲人编程
pythonNLPNEREE信息抽取pythonRE模型角色联合
目录怎样规范化实现信息抽取:原理、流程与Python实战一、引言二、信息抽取系统架构与流程2.1总体架构2.2主要组件三、核心算法与模型原理3.1命名实体识别(NER)3.1.1序列标注模型(BiLSTM-CRF)3.2关系抽取(RE)3.2.1基于依存路径的卷积网络(DepCNN)3.3事件抽取(EE)四、规范化流程可视化五、端到端Python实现示例5.1环境依赖5.2文本预处理模块5.3NE
- 自然语言处理之命名实体识别:Flair:Flair框架概览与安装
zhubeibei168
自然语言处理自然语言处理人工智能中文分词bert
自然语言处理之命名实体识别:Flair:Flair框架概览与安装自然语言处理之命名实体识别:Flair框架概览与安装Flair框架的起源与目标Flair,一个开源的自然语言处理(NLP)框架,由荷兰的InstituteforLanguage,LogicandInformation(ILLI)开发。其目标是提供一个易于使用、高度可扩展的平台,用于执行各种NLP任务,包括命名实体识别(NER)、情感分
- 隐马尔科夫模型java实现
旭旭_哥
java机器学习
上周微信公众号推荐了一篇文章叫隐马尔科夫中文词的文章,原文http://blog.csdn.net/u014365862/article/details/54891582大概了看了下,讲的通俗易懂,这周还很忙,一直在做crf模型,周五比较闲,明天也五一,花了一下午的时间写了下代码实现隐马尔科夫模型,代码中最好是用对手的形式,hmm一旦长了,数字变小,会产生问题,我看了下hanlp的hmm分词实现,
- 【大模型:知识图谱】--命名实体识别(NER)详解
西柚小萌新吖(●ˇ∀ˇ●)
大模型知识图谱人工智能
在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识图谱的每个步骤。今天介绍知识图谱里面的NER的环节。命名实体识别(NamedEntityRecognition,简称NER),是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。通常包括两部分:(1)实体边界识别;(2)确定实体类别(人名、地名、机构名或其他)。目录1.NER--中文问题2.NER--方法总结2.1基于
- 依存句法分析
ox180x
自然语言处理人工智能知识图谱nlp
捂脸欢迎star^_^定义HanLP的定义依存句法分析,是指识别语句中词与词之间的依存关系,并揭示其句法结构,包括主谓关系、动宾关系、核心关系等。用依存语言学来理解语义,精准掌握用户意图百度ddparser的定义依存句法分析是自然语言处理核心技术之一,旨在通过分析句子中词语之间的依存关系来确定句子的句法结构。依存句法分析作为底层技术,可直接用于提升其他NLP任务的效果,这些任务包括但不限于语义角色
- BERT-BILSTM-GCN-CRF-for-NER: NER任务中的融合创新
傅阳轩
BERT-BILSTM-GCN-CRF-for-NER:NER任务中的融合创新【下载地址】BERT-BILSTM-GCN-CRF-for-NERNER任务中的融合创新BERT-BILSTM-GCN-CRF-for-NER是一款专注于命名实体识别(NER)任务的创新模型,结合了BERT、双向长短期记忆网络(BILSTM)、图卷积网络(GCN)和条件随机场(CRF)的优势。该模型通过引入GCN捕捉实体
- MATLAB 自然语言处理入门教程
tyatyatya
MATLAB教程MATLAB下载安装教程matlab自然语言处理开发语言
文章目录前言环境配置一、MATLABNLP工具箱概述二、核心功能与API1.文本数据准备2.特征提取3.文本分类(传统机器学习)4.深度学习文本分类(LSTM)三、实战案例:情感分析四、高级应用1.命名实体识别(NER)2.主题模型(LDA)前言以下是MATLAB自然语言处理(NLP)的入门教程,涵盖基础概念、核心功能。环境配置MATLAB下载安装教程:https://blog.csdn.net/
- [自然语言处理] NLP-文本预处理-详解
AIAdvocate
自然语言处理easyui人工智能python文本预处理
一、认识文本预处理1文本预处理及其作用文本语料在输送给模型前一般需要一系列的预处理工作,才能符合模型输入的要求,如:将文本转化成模型需要的张量,规范张量的尺寸等,而且科学的文本预处理环节还将有效指导模型超参数的选择,提升模型的评估指标.2文本预处理中包含的主要环节文本处理的基本方法文本张量表示方法文本语料的数据分析文本特征处理数据增强方法2.1文本处理的基本方法分词词性标注命名实体识别2.2文本张
- 提取微博文本中的具体地名有哪些方法
DarthP
深度学习人工智能
提取微博文本中的具体地名有以下几种方法:基于正则表达式:对微博文本进行正则匹配,提取出文本中符合某种特定格式的地名。基于词典匹配:使用一个预先编制的词典,在微博文本中查找是否有在词典中出现过的地名。基于命名实体识别(NER):利用自然语言处理技术中的命名实体识别方法,对微博文本进行语言分析,从中提取出地名。基于地理信息抽取:利用地理信息处理技术,从微博文本中提取出经纬度信息或地理位置信息,然后根据
- 自然语言处理之命名实体识别:Bi-LSTM-CRF在信息抽取中的实战革命
Loving_enjoy
计算机学科论文创新点自然语言处理
**从海量文本中精准捕捉关键信息,是AI时代企业的核心竞争力**在医疗报告中快速定位疾病与药物、从法律文书中提取关键条款、在新闻中实时追踪热点事件——这些场景的背后,都离不开**命名实体识别(NER)**技术的支撑。而作为NER领域的“黄金搭档”,**Bi-LSTM-CRF模型**凭借其独特的序列建模能力,正在推动信息抽取技术进入工业级应用时代。本文将深入解析该模型在信息抽取中的实战价值,并揭示其
- 利用Python进行自然语言处理——从基础到高级应用
egzosn
python自然语言处理easyui开发语言人工智能
本文将详细介绍如何使用Python进行自然语言处理(NLP),涵盖从基础概念、常用工具和库,到高级特性和实际案例的全面内容。通过实际代码示例和项目实践,帮助读者掌握这一强大技术的应用方法。目录自然语言处理概述PythonNLP库介绍数据预处理词向量与嵌入文本分类命名实体识别(NER)问答系统(QA)机器翻译情感分析实战案例:构建一个简单的聊天机器人总结与未来展望1.自然语言处理概述1.1什么是NL
- 自然语言处理之命名实体识别:Flair:命名实体识别基础概念
zhubeibei168
自然语言(二)自然语言处理easyui人工智能深度学习
自然语言处理之命名实体识别:Flair:命名实体识别基础概念一、命名实体识别简介1.1什么是命名实体识别命名实体识别(NamedEntityRecognition,NER)是自然语言处理(NLP)领域的一个重要任务,旨在从文本中识别并分类特定类型的实体,如人名、地名、组织机构名、时间、货币等。这一过程对于信息抽取、问答系统、机器翻译等应用至关重要,因为它帮助系统理解文本中的关键信息,从而做出更准确
- Python NLTK库【NLP核心库】全面解析
老胖闲聊
python自然语言处理开发语言
以下是关于PythonNLTK(NaturalLanguageToolkit)库的全面深入讲解,涵盖核心功能、应用场景及代码示例:NLTK库基础一、NLTK简介NLTK是Python中用于自然语言处理(NLP)的核心库,提供了丰富的文本处理工具、算法和语料库。主要功能包括:文本预处理(分词、词干提取、词形还原)句法分析(词性标注、分块、句法解析)语义分析(命名实体识别、情感分析)语料库管理(内置多
- 青少年编程与数学 02-016 Python数据结构与算法 29课题、自然语言处理算法
明月看潮生
编程与数学第02阶段青少年编程python自然语言处理编程与数学算法
青少年编程与数学02-016Python数据结构与算法29课题、自然语言处理算法一、文本预处理1.分词(Tokenization)2.停用词过滤(StopWordsRemoval)二、词性标注(Part-of-SpeechTagging)1.基于规则的词性标注2.基于统计的词性标注三、命名实体识别(NamedEntityRecognition,NER)1.基于规则的NER2.基于深度学习的NER四
- Named Entity Recognition with Bidirectional LSTM-CNNs(于双向LSTM神经网络的命名实体识别)论文阅读
计算机视觉小刘
自然语言处理深度学习论文阅读神经网络lstm论文阅读自然语言处理
标题:NamedEntityRecognitionwithBidirectionalLSTM-CNNs(于双向LSTM神经网络的命名实体识别)作者:JasonP.C.Chiu,EricNichols单位:哥伦比亚大学,本田研究所发表期刊:CL发表时间:2016年论文研究主题归类:自然语言处理1.论文解决什么问题本文提出了提出了一种新的神经网络架构,这个架构可以通过使用双向LSTM和CNN的混合模型
- NLP 面试宝典
关于NLP那些你不知道的事
大模型LLMs面试经验自然语言处理自然语言处理面试人工智能深度学习AIGC职场和发展chatgpt
介绍:本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含自然语言处理各领域的面试题积累。Github地址:https://github.com/km1994/NLP-Interview-Notes四、NLP学习算法常见面试篇4.1信息抽取常见面试篇4.1.1命名实体识别常见面试篇隐马尔科夫算法HMM常见面试篇一、基础信息介绍篇1.1什么是概率图模
- python和nltk自然语言处理 脚本之家_NLTK基础教程:用NLTK和Python库构建机器学习应用 完整版pdf...
weixin_39834084
脚本之家
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。目录第1章自然语言处理简介11.
- python和nltk自然语言处理 pdf_NLTK基础教程:用NLTK和Python库构建机器学习应用 完整版pdf...
weixin_39531374
pdf
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。第1章自然语言处理简介11.1为
- 细品CLUENER2020中文细粒度命名实体识别
Panesle
总结机器学习人工智能ner
CLUENER2020中文细粒度命名实体识别研读与总结1.CLUENER2020数据集的构建与特点1.1数据来源与标注方法CLUENER2020数据集是从THUCNews中创建的,THUCNews包含约740,000篇来自新浪新闻RSS的新闻文章,涵盖14个不同领域的新闻类别(如金融、教育、娱乐等)。数据集的构建过程如下:采样与预标注:从THUCNews中随机采样新闻文章,每篇文章包含多个句子。通
- 英文命名实体识别:Flair
Panesle
总结ner
Flair是一种基于深度学习的自然语言处理框架,它通过字符级语言模型和上下文字符串嵌入(contextualstringembeddings)实现了高质量的命名实体识别(NER)。1.核心思想:上下文字符串嵌入Flair的核心创新在于提出了一种新的词嵌入方法——上下文字符串嵌入(contextualstringembeddings)。这种嵌入方法具有以下特点:基于字符:直接将单词视为字符序列进行建
- DeepSeek:揭秘支持的AI模型与算法全览
鸭鸭鸭进京赶烤
人工智能机器人agiaiopencv算法计算机网络
以下是一些常见的AI模型和算法类型,DeepSeek可能支持的内容:1.自然语言处理(NLP)文本分类:用于情感分析、垃圾邮件检测等。命名实体识别(NER):从文本中提取人名、地点、组织等信息。机器翻译:支持多语言之间的自动翻译。文本生成:如GPT系列模型,用于生成文章、对话等。问答系统:基于BERT等模型的智能问答。语义相似度计算:判断两段文本的语义是否相似。2.计算机视觉(CV)图像分类:识别
- 知识图谱问答系列文档(一)——思知机器人简介
AI小波哥
智能问答自然语言处理知识图谱
(一)思知项目介绍思知机器人项目简介知识图谱对话机器人思知机器人项目简介思知项目开放了对话机器人、知识图谱、语义理解、自然语言处理工具。知识图谱融合了两千五百多万的实体,拥有亿级别的实体属性关系,机器人采用了基于知识图谱的语义感知与理解,致力于最强认知大脑。自然语言处理工具包的功能有:中文分词、词性标注、命名实体识别、关键词提取、文本摘要、新词发现、情感分析等。开放的项目有:-知识图谱-对话机器人
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- 自然语言处理NLP入门 -- 第八节OpenAI GPT 在 NLP 任务中的应用
山海青风
人工智能gpt自然语言处理python
在前面的学习中,我们已经了解了如何使用一些经典的方法和模型来处理自然语言任务,如文本分类、命名实体识别等。但当我们需要更强的语言生成能力时,往往会求助于更先进的预训练语言模型。OpenAI旗下的GPT系列模型(如GPT-3、GPT-3.5、GPT-4等)在生成文本方面拥有强大的表现。它们不仅能进行语言生成,也可用于诸多NLP任务,包括文本摘要和情感分析。本章将重点介绍:GPT的文本生成原理和应用场
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end