iOS 系统自带了人脸识别的方法,而且非常简单。无论针对图片 or 摄像头,都有系统级方法。
iOS 系统级 UIImage 人脸识别
iOS 系统的 CIDetector 封装得非常简洁易于使用。
代码量极小,就能完成识别,而且速度非常快。
但缺点就是识别特征过少,只有脸、眼、嘴相关的。相对于 dlib 的 68 个点位特征,实在有点不够用。
UIImage *faceImage = [UIImage imageNamed:@"face1.png"];
self.resultView.image = faceImage;
CIImage *image = [CIImage imageWithCGImage:faceImage.CGImage];
CIContext *context = [CIContext contextWithOptions:nil];
NSDictionary *param = [NSDictionary dictionaryWithObject:CIDetectorAccuracyHigh forKey:CIDetectorAccuracy];
CIDetector *faceDetector = [CIDetector detectorOfType:CIDetectorTypeFace context:context options:param];
NSArray *detectResult = [faceDetector featuresInImage:image];
CGAffineTransform transform = CGAffineTransformScale(CGAffineTransformIdentity, 1, -1);
transform = CGAffineTransformTranslate(transform, 0, -faceImage.size.height);
for (CIFaceFeature *faceFeature in detectResult) {
CGRect rect = CGRectApplyAffineTransform(faceFeature.bounds, transform);
UIView *borderView = [[UIView alloc] initWithFrame:rect];
borderView.layer.borderColor = [UIColor yellowColor].CGColor;
borderView.layer.borderWidth = 1;
[self.resultView addSubview:borderView];
}
看一下 CIFaceFeature 这个类的参数,提供了少量可供识别使用的参数。
要注意的是,这个类的坐标系 和我们 UIView 里的坐标系是不一样的。
所以如果用到,所以我们做了一些转换。
CGAffineTransform transform = CGAffineTransformScale(CGAffineTransformIdentity, 1, -1);
transform = CGAffineTransformTranslate(transform, 0, -faceImage.size.height);
CGRect rect = CGRectApplyAffineTransform(CIFaceFeature.bounds, transform);
iOS 系统级视频流的人脸识别
视频我们会使用 AVCaptureSession
这个类来完成。
我们需要一个 AVCaptureSession 来完成视频流,一个 AVCaptureVideoPreviewLayer 来完成展示。
AVCaptureSession 里需要有一个 input 和一个 output。这里,我们其实是有2种 output 可以用的,分别对应的2种 delegate 处理。
- (AVCaptureSession *)session {
if (!_session) {
_session = [[AVCaptureSession alloc] init];
[_session setSessionPreset:AVCaptureSessionPreset1280x720];
}
return _session;
}
- (void)addVideoInput {
AVCaptureDevice *deviceI = nil;
for (AVCaptureDevice *device in [AVCaptureDevice devices]) {
if (device.position == AVCaptureDevicePositionFront && [device hasMediaType:AVMediaTypeVideo]) {
deviceI = device;
break;
}
}
AVCaptureDeviceInput*input = [[AVCaptureDeviceInput alloc] initWithDevice:deviceI error:nil];
if ([self.session canAddInput:input]) {
[self.session addInput:input];
}
}
- (void)setupPreviewLayer {
self.previewLayer = [AVCaptureVideoPreviewLayer layerWithSession:self.session];
[self.previewLayer setVideoGravity:AVLayerVideoGravityResizeAspect];
self.previewLayer.frame = CGRectMake(0, 0, VideoWidth, VideoHeight);
[self.videoView.layer addSublayer:self.previewLayer];
}
一、使用 AVCaptureVideoDataOutput
需要实现AVCaptureVideoDataOutputSampleBufferDelegate
的代理方法。
这个 delegate 会返回每个视频帧给我们,但不是我们常见的 UIImage,需要我们做格式转换。
并且 delegate 是在非主线程,我们要做 UI 展示的时候,需要主动切换主线程。
你还是可以用视频获取到的每一帧转换为 UIImage 来识别,速度就...所以我们不会直接用这种方法来做人脸识别。
- (void)addVideoOutput1 {
AVCaptureVideoDataOutput *videoOutput = [[AVCaptureVideoDataOutput alloc] init];
[videoOutput setSampleBufferDelegate:self queue:dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)];
if ([self.session canAddOutput:videoOutput]) {
[self.session addOutput:videoOutput];
}
for (AVCaptureConnection *conn in videoOutput.connections) {
if (conn.supportsVideoMirroring) {
conn.videoOrientation = AVCaptureVideoOrientationPortrait;
conn.videoMirrored = YES;
}
}
NSDictionary *settings = @{(NSString *)kCVPixelBufferPixelFormatTypeKey: @(kCVPixelFormatType_32BGRA)};
[videoOutput setVideoSettings:settings];
}
#pragma mark - AVCaptureVideoDataOutputSampleBufferDelegate
- (void)captureOutput:(AVCaptureOutput *)output didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection {
CVImageBufferRef buffer;
buffer = CMSampleBufferGetImageBuffer(sampleBuffer);
CVPixelBufferLockBaseAddress(buffer, 0);
uint8_t *base;
size_t width, height, bytesPerRow;
base = (uint8_t *)CVPixelBufferGetBaseAddress(buffer);
width = CVPixelBufferGetWidth(buffer);
height = CVPixelBufferGetHeight(buffer);
bytesPerRow = CVPixelBufferGetBytesPerRow(buffer);
CGColorSpaceRef colorSpace;
CGContextRef cgContext;
colorSpace = CGColorSpaceCreateDeviceRGB();
cgContext = CGBitmapContextCreate(base, width, height, 8, bytesPerRow, colorSpace, kCGBitmapByteOrder32Little | kCGImageAlphaPremultipliedFirst);
CGColorSpaceRelease(colorSpace);
CGImageRef cgImage;
UIImage *image;
cgImage = CGBitmapContextCreateImage(cgContext);
image = [UIImage imageWithCGImage:cgImage];
[self detectFace:image]; // 静态图片的识别方法
CGImageRelease(cgImage);
CGContextRelease(cgContext);
CVPixelBufferUnlockBaseAddress(buffer, 0);
}
二、 使用 AVCaptureMetadataOutput
需要实现AVCaptureMetadataOutputObjectsDelegate
的代理方法。
它会识别到指定的 metadataObjectTypes
后,回调 delegate 通知我们处理。
如果没有识别到,不会调用。
这里我们指定了人脸,那么它在识别到人脸后,产生回调。
- (void)addVideoOutput2 {
AVCaptureMetadataOutput *metaOutput = [[AVCaptureMetadataOutput alloc] init];
[metaOutput setMetadataObjectsDelegate:self queue:dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)];
if ([self.session canAddOutput:metaOutput]) {
[self.session addOutput:metaOutput];
}
metaOutput.metadataObjectTypes = @[AVMetadataObjectTypeFace];
}
#pragma mark - AVCaptureMetadataOutputObjectsDelegate
- (void)captureOutput:(AVCaptureOutput *)output didOutputMetadataObjects:(NSArray<__kindof AVMetadataObject *> *)metadataObjects fromConnection:(AVCaptureConnection *)connection {
dispatch_async(dispatch_get_main_queue(), ^(void) {
[self.videoView.subviews makeObjectsPerformSelector:@selector(removeFromSuperview)];
});
if (metadataObjects.count > 0) {
dispatch_async(dispatch_get_main_queue(), ^(void) {
CGSize size = self.previewLayer.bounds.size;
size.width = 720.0 / 1280.0 * size.height;
CGFloat offsetX = (self.previewLayer.bounds.size.width - size.width) / 2.0;
for (AVMetadataObject *obj in metadataObjects) {
CGFloat x = size.width * obj.bounds.origin.y;
CGFloat y = size.height * obj.bounds.origin.x;
CGFloat width = obj.bounds.size.height * size.width;
CGFloat height = obj.bounds.size.width * size.height;
CGRect rect = CGRectMake(x + offsetX, y, width, height);
UIView *faceView = [[UIView alloc] initWithFrame:rect];
faceView.layer.borderColor = [UIColor greenColor].CGColor;
faceView.layer.borderWidth = 2;
[self.videoView addSubview:faceView];
}
});
}
}
可能实际过程中,会把 AVCaptureVideoDataOutput
和 AVCaptureMetadataOutput
结合起来用,一个拿到视频帧,一个拿到头像位置。
然后把这2组数据,传给下一步处理识别更多、更快的框架来使用。比如参考链接里的第2个,即是使用这种方式。它将这2组数据,传给了 dlib 来处理。
测试
单人原图:
单人识别:
多人原图:
多人识别:
参考
刀客传奇-人脸识别技术 (一) —— 基于CoreImage实现对静止图片中人脸的识别
会飞的大马猴-iOS 相机流人脸识别(一)-人脸框检测(基于iOS原生,附demo)