常用HiveQL总结 - Treant - 博客园
http://www.cnblogs.com/en-heng/p/5513176.html
最近在用Hive做多维数据分析,总结一些常用HiveQL命令。
- 建表
以纯文本数据建表:
create table default.calendar_table (day_cal date,week_cal string,montn_cal string,year_cal string)row format delimited fields terminated by ','stored as textfile;
若未指定为外部表(external table),则默认为托管表(managed table)。二者的区别在于load与drop操作:托管表用load data inpath
加载数据(路径可为本地目录,也可是HDFS目录),该操作会将该文件放在HDFS目录:/user/hive/warehouse/ 下;而外部表的数据是在location
中指定,一般配合partition描述数据的生成信息;drop托管表时会将元数据与/user/hive/warehouse/下的数据一起删掉,而drop外部表时只会删除元数据。将本地文件加载到托管表:
load data local inpath 'cal.csv' overwrite into table default.calendar_table;
以orc file数据建外部表表:
create external table default.ad_base(uid string,adx string,exposure string,click string)partitioned by (day_time date)stored as orclocation '/
- Partition
增加partition并指定location:
alter table DEFAULT.ad_baseadd if not exists partition (day_time=date '2016-05-20')location '2016-05-20/xxx';
重新设置partition的location:
alter table DEFAULT.ad_basepartition (day_time=date '2016-05-20')set location 'hdfs://
删除partition
alter table DEFAULT.ad_basedrop if exists partition (day_time=date '2016-05-20')ignore protection;
查看所有的paritition,以及查看某一partition的详细信息:
show partitions ad_base;describe formatted ad_base partition(day_time = '2016-05-20');
- UDF
Hive的UDF非常丰富,基本能满足大部分的需求。
正则匹配获取相应字符串:
regexp_extract(b.dvc, '(.)_(.)', 2) as imei
复杂数据类型map、struct、指定schema的struct、array、union的构造如下:
map(key1, value1, key2, value2, ...)struct(val1, val2, val3, ...)named_struct(name1, val1, name2, val2, ...)array(val1, val2, ...)create_union(tag, val1, val2, ...)
获取复杂数据类型的某列值:
array: A[n]map: M[key]struct: S.x
条件判断case when,比如,在left join中指定默认值:
select uid, media, case when b.tag is NULL then array(named_struct('tag','EMPTY', 'label','EMPTY')) else b.tag end as tagsfrom ad_base aleft outer join ad_tag b on (a.uid = regexp_extract(b.dvc, '(.)_(.)', 2) and exposure = '1');
UDTF
UDTF主要用来对复杂数据类型进行平铺操作,比如,explode平铺array与map,inline平铺array
;这种内置的UDTF要与lateral view配合使用:
select myCol1, col2 FROM baseTablelateral view explode(col1) myTable1 AS myCol1;select uid, tag, labelfrom ad_taglateral view inline(tags) tag_tb;-- tags: array多维分析
Hive 提供grouping set、rollup、cube关键字进行多维数据分析,可以解决自定义的维度组合、上钻维度(n
1
" role="presentation" style="margin: 0px; padding: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">n+1
n
1
种)组合、所有的维度组合(2
n
" role="presentation" style="margin: 0px; padding: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">2n
2
n
种)的需求。比如:
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS ( (a, b), a, b, ( ) )-- equivalent aggregate query with group bySELECT a, b, SUM( c ) FROM tab1 GROUP BY a, bUNIONSELECT a, null, SUM( c ) FROM tab1 GROUP BY a, nullUNIONSELECT null, b, SUM( c ) FROM tab1 GROUP BY null, bUNIONSELECT null, null, SUM( c ) FROM tab1GROUP BY a, b, c, WITH ROLLUP -- is equivalent to GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (a), ( ))GROUP BY a, b, c WITH CUBE -- is equivalent to GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (b, c), (a, c), (a), (b), (c), ( ))
此外,Hive还提供了GROUPING__ID
函数对每一组合的维度进行编号,以区分该统计属于哪一维度组合,比如:
select tag, media, grouping__id, count(*) as pvfrom ad_basegroup by tag, media with rollup;
以指定分隔符保存结果到本地目录:
explainINSERT OVERWRITE LOCAL DIRECTORY '/home/