- 9. 卷积神经网络工程实践
路小漫
小姐姐归来,带着蜜汁微笑,啦啦啦~这次讲的应该是一些成功的神经网络架构,毕竟我们不能总重复造轮子,借鉴很重要AlexNet结构AlexNet的架构如图,有5个卷积层问题1输入是:227×227×3的图像第一层(卷积层1):96个大小为11×11的滤波器,步长为4问题:卷积层的输出是?*答案:55×55×96问题2问题:这一层的超参数的个数是多少?答案:(11×11×3)×96=35k问题3输入:2
- 深度学习,人工智能总结
qq_14827935
人工智能深度学习
1,入门建议少看书,多看csdn上帖子总结(主要就是BP神经网络,CNN,rnn),建立宏观的概念和主要框架,书可以作为进阶补充作为工具书查阅。2,目前的神经网络还处于前牛顿时代,就是实践中图像识别效果很好,但是原理不太清楚3,现在的人工智能有点像通信行业2g时代,从2012年alexnet到openai的chatgpt,未来还有很长的发展潜力。丰田不是汽车的发明者,但现在销量最高。oepnai在
- 【深度学习】使用tensorflow实现VGG19网络
杨得江-君临天下wyj
网络协议网络
【深度学习】使用tensorflow实现VGG19网络本文章向大家介绍【深度学习】使用tensorflow实现VGG19网络,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。VGG网络与AlexNet类似,也是一种CNN,VGG在2014年的ILSVRClocalizationandclassification两个问题上分别取得了第一名和
- AlexNet的出现推动深度学习的巨大发展
科学禅道
深度学习模型专栏深度学习人工智能
尽管AlexNet(2012)的代码只比LeNet(1998)多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。AlexNet(由AlexKrizhevsky、IlyaSutskever和GeoffreyHinton共同设计)在架构上相对于早先的LeNet-5等浅层神经网络并没有显著增加代码行数,但其在深度学习领域的重要突破在于其对深层卷积神经网络的实际应用和验证。Ale
- ChatGPT魔法1: 背后的原理
王丰博
GPTchatgpt
1.AI的三个阶段1)上世纪50~60年代,计算机刚刚产生2)Machinelearning3)Deeplearning,有神经网络,最有代表性的是ChatGPT,GPT(GenerativePre-TrainedTransformer)2.深度神经网络llyaSutskever:做图像识别,使用了GPT去并行计算及训练。Alexnet数据库已经label好的(李飞飞)GPU算力3.GPT3.1T
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- 深度学习-分类任务---经典网络
丁引
网络深度学习
文章目录经典网络1LeNet51.1模型结构1.2模型结构1.3模型特性2AlexNet2.1模型介绍2.2模型结构2.3模型解读2.4模型特性3可视化ZFNet-转置卷积3.1基本的思想及其过程3.2卷积与转置卷积3.3卷积可视化3.4ZFNet和AlexNet比较4VGGNet4.1模型结构4.2模型特点5NetworkinNetwork5.1模型结构5.2模型创新点6GoogleNet6.1
- 【机器学习】卷积和反向传播
无水先生
机器学习人工智能人工智能神经网络
一、说明自从AlexNet在2012年赢得ImageNet竞赛以来,卷积神经网络(CNN)就变得无处不在。从不起眼的LeNet到ResNets再到DenseNets,CNN无处不在。您是否想知道CNN的反向传播中会发生什么,特别是反向传播在CNN中的工作原理。如果您读过反向传播,您就会了解它是如何在具有全连接层的简单神经网络中实现的。(AndrewNg在Coursera上的课程对此做了很好的解释)
- 深度学习的新进展:从图像识别到自然语言处理
一休哥助手
话题深度学习自然语言处理人工智能
导语:深度学习作为人工智能领域的重要分支,近年来取得了巨大的突破和进展。从最初的图像识别到如今的自然语言处理,深度学习正逐渐渗透到我们日常生活的方方面面。本文将带您一探深度学习的新进展,了解其在图像识别和自然语言处理领域的应用。一、图像识别:从精确度到实时性的提升深度学习在图像识别领域的应用已经取得了令人瞩目的成果。从最早的AlexNet到如今的ResNet、Inception等模型,深度学习模型
- 卷积神经网络(CNN)
栉风沐雪
深度学习cnn人工智能神经网络
本文仅在理论方面讲述CNN相关的知识,并给出AlexNet,Agg,ResNet等网络结构的代码。1.构成由输入层、卷积层、池化层、全连接层构成。输入层:输入数据卷积层:提取图像特征池化层:压缩特征全连接层:为输出准备,形同一维神经网络,下文不另起文笔描述2.神经网络与CNN对比左边为神经网络,右边为卷积神经网络。均采用的时较为简单的结构,卷积神经网络是对基础神经网络的延申,由一维扩展到三位空间,
- 深度学习的进展
李建军
软件使用深度学习人工智能
深度学习近年来的进展在各个领域均展现出非凡的实力,以下将进一步详述几个关键领域的具体突破和应用:1.计算机视觉图像分类与识别:随着深度卷积神经网络的发展,如AlexNet、VGG、Inception系列、ResNet以及DenseNet等模型,图像分类准确率显著提高。尤其是ImageNet大规模视觉识别挑战赛上,错误率逐年降低,现在已经接近人类水平。目标检测:RCNN系列(FastRCNN、Fas
- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- caffe中的参考模型
雨住多一横
RCNNmode_reference_rcnn_ilsvrc13l.pngcaffenet用于Flickrstyle数据集model_finetune_flickr_style.pngAlexNetmodel_alexnet.pnggooglenetmodel_googlenet.pngcaffenetmodel_reference_caffenet.png
- 人工智能:破局与创新的较量,谁将主宰未来?
猫之角
一、AI发展趋势1.1数据驱动的增长AI的快速发展离不开大量数据的支撑。随着5G、物联网等技术的普及,数据的采集、传输和处理能力得到了极大提升。这使得数据驱动的AI技术取得了突破性进展,尤其是在计算机视觉、自然语言处理等领域。1.2深度学习与神经网络的创新深度学习作为AI的核心技术之一,其基于神经网络的算法在近年来得到了快速发展。从LeNet、AlexNet到ResNet,再到GPT、BERT等模
- Deeplearning with pytorch p1ch2
风与海的半神
深度学习
Deeplearningwithpytorchp1ch2AlexNet&ResNetResNet&resnet101AlexNet&ResNetResNet&resnet101ResNet:residualnetworksresnet101多层神经网络结构,今天的主要收获如下更改jupyter默认文件路径;torchvision中的models,transforms模块;PIL的Image模块;t
- 语义分割:从早期探索到深度学习的突破
kadog
ByGPT深度学习人工智能笔记python
语义分割:从早期探索到深度学习的突破语义分割的端倪:从早期探索到深度学习的突破引言早期技术:图像处理与模式识别边缘检测区域生长图割(GraphCut)聚类方法深度学习的兴起:CNN革命2012年AlexNet的突破全卷积网络(FCN)U-Net的创新设计深度学习卷积网络技术不断创新发展里程碑:端到端学习端到端全卷积网络(FCN)MaskR-CNN的多任务学习Transformer在视觉任务中的应用
- 面向ChatGPT学AI?
fVector
ChatGPT初体验本文整理了一些询问ChatGPT的有关深度学习的问题和答案本文首发于2022年12月6日,微信公众号[胡说深度学习]。1.一些深度学习的问题2.问题和答案3.使用ChatGPT后的感觉1.一些深度学习的问题使用python和pytorch写Alexnet神经网络神经网络中使用激活函数的作用是什么?深度学习中常用的生成模型有哪些?深度学习中正则化的作用是什么?现在图像生成领域可以
- RMNet: Equivalently Removing Residual Connection from Networks
qgh1223
人工智能计算机视觉深度学习剪枝
RMNet:EquivalentlyRemovingResidualConnectionfromNetworks论文链接:https://arxiv.org/pdf/2111.00687.pdf源码链接:https://hub.nuaa.cf//fxmeng/RMNet简介自从AlexNet问世以来,SOTA的CNN架构变得越来越深。例如,AlexNet只有5个卷积层,很快被VGG和GoogleN
- Sparse Iso-FLOP Transformations for Maximizing Training Efficiency
qgh1223
模型压缩深度学习计算机视觉人工智能剪枝
SparseIso-FLOPTransformationsforMaximizingTrainingEfficiency论文链接:https://arxiv.org/pdf/2303.11525.pdf源码链接:https://hub.nuaa.cf/CerebrasResearch/Sparse-IFT简介模型尺寸和训练数据的增加导致了很多深度学习的突破(AlexNet、ResNet、Trans
- 局部响应归一化层(LRN)
LiBiscuit
冒泡~二月啦!一年的十二分之一就过啦鸭接下来该收收心过春节啦!于是来个年前最后一更~局部响应归一化层(LocalResponseNormalization)局部响应归一化层简称LRN,是在深度学习中提高准确度的技术方法。一般是在激活、池化后进行的一中处理方法,因在Alexnet中运用到,故做一下整理。为什么要引入LRN层?首先要引入一个神经生物学的概念:侧抑制(lateralinhibitio),
- 论文(二):AlexNet
瑾怀轩
论文集深度学习
原名:ImageNetClassificationwithDeepConvolutionalNeuralNetworks作者:AlexKrizhevsky,IlyaSutskever,GeoffreyE.Hinton摘要Wetrainedalarge,deepconvolutionalneuralnetworktoclassifythe1.2millionhigh-resolutionimages
- AlexNet,ZFNet详解
圆圆栗子君
深度学习专栏深度学习人工智能cnn神经网络
1AlexNet网络结构对于AlexNet网络来说,因为当时资源环境受限,他从第一步卷积开始就把一个图像分到两个GPU上训练,然后中间进行组合最后进行融合成全连接成1000个置信度1得到一张3x224x224的图像,然后进行11x11的卷积,卷积两次,分别分配到不同的GPU上分别得到,两个48x55x55的featuremap,然后进行最大池化操作从48x55x55变成48x27x272分别进行相
- AlexNet(深度学习模型)详解
GeekyGuru
深度学习计算机视觉神经网络
AlexNet是一种深度卷积神经网络,由AlexKrizhevsky、IlyaSutskever和GeoffreyHinton于2012年在ImageNet图像分类竞赛中首次引入。这项竞赛是一个庞大的数据集,其中包含超过100万张图像和1000个不同的类别。AlexNet是第一个在ImageNet数据集上取得最佳结果的深度学习模型。本文将详细介绍AlexNet的结构和训练过程,并分析它在计算机视觉
- tensorflow学习笔记-图像分类模型-AlexNet实现
飞天小小猫
之前一篇文章中总结了CNN中图像分类的经典模型,包括论文解读和分析,但是不写个代码搞一把总觉得虚~啊哈哈这个系列里准备把这些个经典模型用tensorflow实现一下。参考之前引用的blog:深度学习AlexNet模型详细分析上代码吧。参照着模型看更好读一些。'''图像分类模型的tensorflow实现之--AlexNetTensorflowVersion:1.4PythonVersion:3.6R
- 经典分类CNN模型系列其一:Alexnet
manofmountain
介绍传统的机器学习分类模型像SVM,逻辑回归,决策树,甚至贝叶斯网络等在CNN推动的深度学习近几年大肆发展之后,都已纷纷被秒成了渣。这一切都始于2012年。Alexnet的横空出世及其在ILSVRC2012Imagenet数据集分类大赛中表现出的摧枯拉朽的领先正式宣告了深度学习纪元的开启。其实CNN模型并非啥新玩意,早在1997年Yang,Lecun就有实现过一个CNN模型并将之用于类似于MNST
- 查看神经网络中间层特征矩阵及卷积核参数
mango1698
神经网络矩阵人工智能
可视化featuremaps以及kernelweights,使用alexnet模型进行演示。1.查看中间层特征矩阵alexnet模型,修改了向前传播importtorchfromtorchimportnnfromtorch.nnimportfunctionalasF#对花图像数据进行分类classAlexNet(nn.Module):def__init__(self,num_classes=100
- [论文复现]Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing
JUNLONG2
论文翻译连接https://www.jianshu.com/p/b1be6a8a0bf7文章中提到的轮子有:1.在开源BranchyNet和Chainer下,实现了分支模型。2.使用经典AlexNet模型对cifar-10数据集执行图像识别任务。3.设置静态带宽环境,我们使用WonderShaper工具控制可用带宽。4.对于动态带宽环境设置,我们使用比利时4G/LTE带宽记录的数据集来模拟动态带宽
- 快速入门Torch构建自己的网络模型
半度、
机器学习网络
真有用构建自己的网络模型读前必看刚学完Alex网络感觉很厉害的样子,我也要搭建一个可以看着网络结构实现上面的代码你已经很强了,千万不要再想实现VGG等网络!!!90%你能了解到的模型大佬早已实现好,直接调用就OK下面是源码用nn.Module实现的AlexNet,和我们实现的区别并不大,将模型print出来能看懂就可以不忘初心,构建自己的网络模型,将AlexNet输入改为单通道图片:Tips读前必
- 李沐之使用块的网络VGG
sendmeasong_ying
深度学习pytorch人工智能python
目录1.VGG2.代码实现1.VGGn层是指可以有N个窗口3*3,填充为1的卷积层。有m个通道,这里输入和输出都是一样的。VGG就是替换掉AlexNet整个卷积层的架构。直径大小表示占内存,横坐标表示速度,纵坐标表示精确度。2.代码实现importtorchfromtorchimportnnfrond2limporttorchasd2l"""VGG块"""#该函数有三个参数,分别对应于卷积层的数量
- 机器学习 | 卷积神经网络
rookiexiong
机器学习机器学习cnn人工智能
机器学习|卷积神经网络实验目的采用任意一种课程中介绍过的或者其它卷积神经网络模型(例如LeNet-5、AlexNet等)用于解决某种媒体类型的模式识别问题。实验内容卷积神经网络可以基于现有框架如TensorFlow、Pytorch或者Mindspore等构建,也可以自行设计实现。数据集可以使用手写体数字图像标准数据集,也可以自行构建。预测问题可以包括分类或者回归等。实验工作还需要对激活函数的选择、
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情