306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)

306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第1张图片
图1 - 4bit全加器原理

上一节我们学习了ALU的加法实现功能部件——全加器,进行两个4bit的二进制数相加,就要用到4个全加器(如图1所示)。那么在进行加法运算时,首先准备好的是1号全加器的3个input。而2、3、4号全加器的Cin全部来自前一个全加器的Cout,只有等到1号全加器运算完毕,2、3、4号全加器才能依次进行进位运算,最终得到结果。 这样进位输出,像波浪一样,依次从低位到高位传递, 最终产生结果的加法器,也因此得名为行波进位加法器(Ripple-Carry Adder,RCA)。

RCA的优点是电路布局简单,设计方便, 我们只要设计好了全加器,连接起来就构成了多位的加法器。 但是缺点也很明显,也就是高位的运算必须等待低位的运算完成, 这样造成了整个加法器的延迟时间很长。那么,RCA的效率到底如何呢?让我们来算一算:

将4bit的RCA内部结构全部打开,就得到了如图2所示的4-bit RCA的门电路图。要对一个电路的性能进行分析,我们就要找出其中的最长路径。 也就是找出所有的从输入到输出的电路连接中,经过的门数最多的那一条,也称为关键路径(如图3所示)。

306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第2张图片
图2 - 4-bit RCA的门电路实现

306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第3张图片
图3 - RCA的关键路径

我们来做一个简单的分析, 对于最低位的全加器,它在A、B和Cin都已经准备好。其实,输入信号进入到这块电路之后,在连接线上传递需要花时间。 称为线延迟,而经过这样的门,也需要花时间,称为门延迟。 在进行设计原理分析时,我们主要关注门延迟。

从第一个全加器的A-S这条通路来看,产生第一个S输出,需要通过两个门的延迟。 所以它显然不是最长的路径,当然,从A出发或着从B出发都是一样的, 所以对于第一个全加器,它的最长路径,是红色线标记的那条,后面的全加器关键路径同理可得。

那么,假设经过一个门电路的延迟时间为T,那么经过4个全加器所需要的总延迟时间就是:2T x 4 + T(第一个全加器产生3个T) = 9T。所以推出,经过n个全加器所产生的总延迟时间为2T x n + T = (2n+1)T。

对于一个32bit的RCA,有总延迟时间:(2n+1)T =(2×32+1)×T =65T,这是什么概念呢?举个例子,iPhone 5s的A7 SoC处理器采用28nm制造工艺,主频1.3GHz(0.66ns)。按照这个工艺水平,门延迟T设为0.02ns,那么32-bit RCA的延迟时间为1.3ns ,时钟频率为769MHz,远超A7处理器的主频延迟时间,更别说这个32bit的RCA只是一个加法运算器,更更别说,我们在计算过程中只考虑了门延迟,还有线延迟等各种延迟没有加入计算……

所以RCA的效率绝对是个问题。那么,有没有办法优化呢?RCA的主要问题是高位的运算必须等待低位的“进位输出信号”,那我们的优化思路就是‘能否提前计算出“进位输出信号’ ?”

参见图2,我们可以用前一个全加器的参数来表示后面的进位输出(Cout),即:


306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第4张图片

由此来表示4个全加器的进位输出为:


306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第5张图片

最终我们需要得到的是C4,经过换算,C4=G3+P3·G2+P3·P2·G1+P3·P2·P1·G0+P3·P2·P1·P0·C0,而这些参数,全部已知!并不需要前一个全加器运算输出,由此我们得到了提前计算进位输出的方法, 用这样的方法实现了加法器就被称为超前进位加法器(Carry-Lookahead Adder,CLA)。

根据上面的优化算法,我们重新绘制了CLA的布线方式(如图4):


306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第6张图片
图4 - CLA原理图
306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA)_第7张图片
图5

那么使用CLA来进行加法运算的效率如何呢?还是按照Apple A7处理器的工艺水平,单个CLA的延迟为0.08ns,4级CLA的延迟为0.26ns,时钟频率3.84GHz,都远远小于主频的延迟,完全符合标准。然而,由图可见,计算4bit的二进制数,就要平行排列4个全加器,那么要是计算8bit,16bit,32bit……的呢?可能就需要更复杂的布线方式,这就是CLA的缺点。

最后,我们列个表比较一下RCA和CLA的优缺点:

- RCA CLA
结构特点 低位全加器的Cout连接到高一位全加器Cin 每个全加器的进位输入并不来自于前一级的全加器,而是来自超前进位的逻辑
优点 电路布局简单,设计方便 计算Ci+1的延迟时间固定为三级门延迟,与加法器的位数无关
缺点 高位的运算必须等待低位的运算完成,延迟时间长 如果进一步拓宽加法器的位数,则电路变得非常复杂

32位的加法器如果采用行波进位的方式,我们已经分析过需要65级的门延迟, 那如果采用超前进位的方式,理想情况下也只需要四级的门延迟,但可惜的是, 这也只是一个理想。因为要实现32位的完全的超前进位,电路就会变得非常的复杂。 因此通常的实现方法, 是采用多个小规模的超前进位加法器拼接而成一个较大的加法器,例如,用4个8-bit的超前进位加法器连接成32-bit加法器。

你可能感兴趣的:(306 - 加法器的优化——超前进位加法器(Carry-Lookahead Adder,CLA))