(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation


Implicit Differentiation 隐函数微分

通常都是用 x去表示y
例如:


但是,有的时候,x和y的关系,比较隐蔽
或者看上去是一个等式

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第1张图片

例如: x^2 + y^2 = 25
这个时候,我们知道
如果是函数, 用竖线检测, 需要把图像拆分

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第2张图片

其实,不猜分,直接计算应该也可以,只是不能用函数的想法去理解了


例子1

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第3张图片

(a)
因为x是自变量,所以同时对x微分

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第4张图片

由链式法则,可以知道

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第5张图片

所以,式子为:

可以得到:

(b)
因为求过 点(3,4) 的斜率
而斜率为

所以,可以知道 过 点(3,4) 的斜率 为 - 3/4
对应的方程为:


例子2

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第6张图片

(a)
因为x是自变量,所以同时对x微分

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第7张图片

化解后,为:

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第8张图片

(b)

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第9张图片

因为过 点(3,3)

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第10张图片

可以得:

(c)
水平切线,大体猜测,应该在图这块:

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第11张图片

水平切线,对应的斜率为 0
可以得到:

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第12张图片

为0
可以得到:

带入到原式中,消元,可以得到:


计算得:
x =0, 或者


所以,加上上面的 x=0, 对应有2个点,分别为:


Orthogonal Trajectories 双曲线的轨迹

2中双曲线:

对应的图像:

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第13张图片
Paste_Image.png

我们求对应的微分:


(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第14张图片

另一种:


(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第15张图片

可以发现,对应的微分值
如果在同一个点的切线,
那么,它们互为 负导数 (互相垂直)


Derivatives of Inverse Trigonometric Functions 反三角函数的导数

这里先用 arcsin 函数举例,
这里 arcsin 其实,就是

也就是:

两边取导数,则有:

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第16张图片

因为



的情况下,有 cos y >= 0

所以:

即:

(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第17张图片
Derivatives of Inverse Trigonometric Functions 反三角函数的导数
(3.6)James Stewart Calculus 5th Edition:Implicit Differentiation_第18张图片

你可能感兴趣的:((3.6)James Stewart Calculus 5th Edition:Implicit Differentiation)