Reservoir Computing论文学习

目录

  • 背景:
    • RC优势:
    • 储备池计算主要理论组成:
  • ESNS数学模型
    • 结构表示
    • 状态方程和输出方程
    • 计算过程
  • 储备池的优化
    • GA;使用进化算法对参数进行优化;
    • 基于随机梯度下降法的储备池参数优化
  • 参考文章:

Reservoir Computing

背景:

  1. 神经网络的一种弥补RNN缺点
  2. 神经网 络方法在具体应用过程中也存在一些局限性 .比如前向 结构的神经网络一 般不适 合处理与 时序相 关的机 器学 习问题 , 而在实际应用中出 现的问 题往往 与时 间相关 , 比如预测 、系统辨识 、自适应滤波等等 .递归神经网络虽 然可以用于解决时序相关问题 ,但递归神经网络在实际 应用中存在训练算法过于复杂 、计算量大 、收敛速度慢 以及网络结构难以确定等 问题 .另 外 , 还存 在记忆 渐消 (Fading Memory)问题 , 随时间步骤的加长 , 误差梯度可能消失或者产生畸变 , 所以递归神经网络一般只适合处理短时时序问题 .这些问题都严重阻碍了递归神经网络 在实际问题中的应用 .

摘抄

​ 为了减少训练过程 的计算负 担以 及克服记忆渐消等问题 , Jaeger 于 2001 年提出回声状态网络(Echo State Networks, ESNs)[1] , Maass 于 2002 年提出流体状态机 2 .这两种方法虽然提出的角度不同 , 但其本质都可以认为是对传统的递归神经网 络训练算法的改进 .D Verstraeten 等在文献[ 3] 中以实验 的方式证明了ESNs和LSMs在本质上是一致的,并将其 统一命名为“储备池计算”(Reservoir Computing)

总结:

神经网络方法在具体问题上存在问题

​ 1: 时序问题虽然可以解决, 但存在算法复杂, 计算量大。

​ 2: 收敛速度慢,网络结构难以确定。

​ 3: 记忆渐消问题:随时间步骤的加长 , 误差梯度可能消失或者产生畸变。

RC优势:

​ ESNs 最大的优势是简化了网络的训练过程 , 解决了传 统递归神经网络结构难以确定,训练算法过于复杂的问题 , 同时也克服了 递归网络存在的记忆渐消问题

储备池计算主要理论组成:

  1. 状态回声网络ESNS:
  2. 流体状态机

ESNS数学模型

结构表示

M个输入

N个处理点

L个输出

Reservoir Computing论文学习_第1张图片

状态方程和输出方程

Reservoir Computing论文学习_第2张图片

总结

状态变量 W,输入输出对状态变量的连接权矩阵W(in),W(back),三项均为随机产生, 产生后就固定不变;

W(out)为训练得到;

f(out)取恒等函数:因为输出层一般线性;

参考文章片段

Reservoir Computing论文学习_第3张图片

计算过程

两个阶段:

  1. 采样阶段
  2. 权值计算阶段

采样阶段

摘抄:采样阶段首先任意选定网络的初始状态 , 但是通 常情况下选取网络的初始状态为0 ,即 x(0)=0.训练样 本 ( u (n ) , n = 1 , 2 , ... , M ) 经 过 输 入 连 接 权 W i n , 样 本 数 据 y (n )经 过 反 馈 连 接 权 W b a c k 分 别 被 加 到 储 备 池 , 按 照系统(1)状态方程和输出方程, 依次完成系统状态的计算和相 应输出 y (n )的 计算与收集 .注意每一时刻系统状态 x (n)的计算 , 都 需要将样本数据 y(n)写入到输出单元 .为了计算输出 连接权矩阵 , 需要从某一时刻开始收集(采样)内部状 态变量 .这里假定从 m 时刻开始收集系统状态 , 并以向 量(x1(i),x2(i),...,xN(i))(i=m,m+1, ...,M)为行 构 成 矩 阵 B (M - m + 1 , N ) , 同 时 相 应 的 样 本 数 据 y (n),也被收集,并构成一个列向量 T(M -m +1,1).这里需 要说明的是 :

(1)如果系统包含有输入到输出 、输出到输出的连 接权 , 那么在收集系统的状态矩阵 B 时 , 还需要 收集相 应的输入和输出部分 ;

(2 ) 为 了 消 除 任 意 初 始 状 态 对 系 统 动 态 特 性 的 影 响 , 总是从某一时刻后才 开始收 集系统的 状态 .从 该时 刻开始 , 可以认为系统反 映的是 输入 、输出 样本数 据之 间的映射关系 .

权值计算阶段

Reservoir Computing论文学习_第4张图片

储备池的优化

GA;使用进化算法对参数进行优化;

寻优参数包括三个 :

  1. 储备池规模 Nx ,
  2. 内部连接权矩阵的谱半径 ρ(W),
  3. 内部连接权矩阵的 稀疏度

缺点:

遗传算法本身的搜索盲目性导致计算量 过大 , 以及容易陷入局部最优的问题限制了其在储备池参数优化的应用

基于随机梯度下降法的储备池参数优化

比经典 ESNs 更为一般的形式 : x(n +1)=(1 -αΔt) x(n) + Δt f (Winu(n +1) + Wx(n) )

同时也引入了两个全局参数 Δt 和 α, 其中 Δt 是离散化,时间间隔与系统时间常数的比值, α叫做decay rate .

进而建立了针对全局参数 Δt 和 α的随机梯度下降优化算法 .

参考文章:

储备池计算概述彭 宇 1 , 王 建 民 1 , 2 , 彭 喜 元 1

你可能感兴趣的:(Reservoir Computing论文学习)