Pandas学习

本文首发于我的博客:gongyanli.com
参考视频:莫烦的Pandas视频

前言:其实我之前看过pandas的书,但是本着看过就忘记的原则,下次再看见他的时候,反正看着很熟悉,怎么用早就抛到九霄云外了。所以这次网上看了几个简单的小视频,然后总结了以下,虽然没有以前看得那么繁琐,但我一直认为够用就好,不够用的等到用的时候再去查找。

一、安装

windows:pip install pandas(anaconda下)
mac:pip install pandas
linux:pip install pandas

二、导入

import pandas as pd
import numpy as np

三、Pandas--基本介绍

Numpy和Pandas区别:

Numpy:列表形式,没有数值标签,类似于python的列表
Pandas:字典形式,类似于python的字典

Series:

s = pd.Series([1,3,6,np.nan,44,1])
print(s)

"""
0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64
"""

DataFrame:

dates = pd.date_range('20160101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])
print(df)

"""
                   a         b         c         d
2016-01-01 -0.253065 -2.071051 -0.640515  0.613663
2016-01-02 -1.147178  1.532470  0.989255 -0.499761
2016-01-03  1.221656 -2.390171  1.862914  0.778070
2016-01-04  1.473877 -0.046419  0.610046  0.204672
2016-01-05 -1.584752 -0.700592  1.487264 -1.778293
2016-01-06  0.633675 -1.414157 -0.277066 -0.442545
"""

print(df['b'])

"""
2016-01-01   -2.071051
2016-01-02    1.532470
2016-01-03   -2.390171
2016-01-04   -0.046419
2016-01-05   -0.700592
2016-01-06   -1.414157
Freq: D, Name: b, dtype: float64
"""

df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1)

"""
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11
"""

df2 = pd.DataFrame({'A' : 1.,
                'B' : pd.Timestamp('20130102'),
                'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
                'D' : np.array([3] * 4,dtype='int32'),
                'E' : pd.Categorical(["test","train","test","train"]),
                'F' : 'foo'})
                
print(df2)

"""
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
"""

print(df2.dtypes)

"""
df2.dtypes
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
"""

print(df2.index)

# Int64Index([0, 1, 2, 3], dtype='int64')

print(df2.columns)

# Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')

print(df2.values)

"""
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
"""

print(df2.describe())

"""
         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
"""

print(df2.T)

"""                   
0                    1                    2  \
A                    1                    1                    1   
B  2013-01-02 00:00:00  2013-01-02 00:00:00  2013-01-02 00:00:00   
C                    1                    1                    1   
D                    3                    3                    3   
E                 test                train                 test   
F                  foo                  foo                  foo   

                     3  
A                    1  
B  2013-01-02 00:00:00  
C                    1  
D                    3  
E                train  
F                  foo  

"""

print(df2.sort_index(axis=1, ascending=False))

"""
     F      E  D    C          B    A
0  foo   test  3  1.0 2013-01-02  1.0
1  foo  train  3  1.0 2013-01-02  1.0
2  foo   test  3  1.0 2013-01-02  1.0
3  foo  train  3  1.0 2013-01-02  1.0
"""

print(df2.sort_values(by='B'))

"""
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
"""

四、Pandas--选择数据

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])

"""
             A   B   C   D
2013-01-01   0   1   2   3
2013-01-02   4   5   6   7
2013-01-03   8   9  10  11
2013-01-04  12  13  14  15
2013-01-05  16  17  18  19
2013-01-06  20  21  22  23
"""

简单筛选

print(df['A'])
print(df.A)

"""
2013-01-01     0
2013-01-02     4
2013-01-03     8
2013-01-04    12
2013-01-05    16
2013-01-06    20
Freq: D, Name: A, dtype: int64
"""

print(df[0:3]) # 跨越多行

"""
            A  B   C   D
2013-01-01  0  1   2   3
2013-01-02  4  5   6   7
2013-01-03  8  9  10  11
"""

print(df['20130102':'20130104']) # 跨越多列

"""
A   B   C   D
2013-01-02   4   5   6   7
2013-01-03   8   9  10  11
2013-01-04  12  13  14  15
"""

标签loc筛选

print(df.loc['20130102'])
"""
A    4
B    5
C    6
D    7
Name: 2013-01-02 00:00:00, dtype: int64
"""

print(df.loc[:,['A','B']]) 
"""
             A   B
2013-01-01   0   1
2013-01-02   4   5
2013-01-03   8   9
2013-01-04  12  13
2013-01-05  16  17
2013-01-06  20  21
"""

print(df.loc['20130102',['A','B']])
"""
A    4
B    5
Name: 2013-01-02 00:00:00, dtype: int64
"""

序列iloc筛选

print(df.iloc[3,1])
# 13

print(df.iloc[3:5,1:3])
"""
             B   C
2013-01-04  13  14
2013-01-05  17  18
"""

print(df.iloc[[1,3,5],1:3])
"""
             B   C
2013-01-02   5   6
2013-01-04  13  14
2013-01-06  21  22

"""

混合ix筛选

print(df.ix[:3,['A','C']])
"""
            A   C
2013-01-01  0   2
2013-01-02  4   6
2013-01-03  8  10
"""

判断筛选

print(df[df.A>8])
"""
             A   B   C   D
2013-01-04  12  13  14  15
2013-01-05  16  17  18  19
2013-01-06  20  21  22  23
"""

五、Pandas--设置值

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])

"""
             A   B   C   D
2013-01-01   0   1   2   3
2013-01-02   4   5   6   7
2013-01-03   8   9  10  11
2013-01-04  12  13  14  15
2013-01-05  16  17  18  19
2013-01-06  20  21  22  23
"""

根据位置loc和iloc设置值

df.iloc[2,2] = 1111
df.loc['20130101','B'] = 2222

"""
             A     B     C   D
2013-01-01   0  2222     2   3
2013-01-02   4     5     6   7
2013-01-03   8     9  1111  11
2013-01-04  12    13    14  15
2013-01-05  16    17    18  19
2013-01-06  20    21    22  23
"""

根据条件设置值

df.B[df.A>4] = 0
"""
                A     B     C   D
2013-01-01   0  2222     2   3
2013-01-02   4     5     6   7
2013-01-03   8     0  1111  11
2013-01-04  12     0    14  15
2013-01-05  16     0    18  19
2013-01-06  20     0    22  23 
"""

按行或列设置值

df['F'] = np.nan
"""
             A     B     C   D   F
2013-01-01   0  2222     2   3 NaN
2013-01-02   4     5     6   7 NaN
2013-01-03   8     0  1111  11 NaN
2013-01-04  12     0    14  15 NaN
2013-01-05  16     0    18  19 NaN
2013-01-06  20     0    22  23 NaN
"""

添加数据--长度必须对齐

df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101',periods=6)) 
"""
             A     B     C   D   F  E
2013-01-01   0  2222     2   3 NaN  1
2013-01-02   4     5     6   7 NaN  2
2013-01-03   8     0  1111  11 NaN  3
2013-01-04  12     0    14  15 NaN  4
2013-01-05  16     0    18  19 NaN  5
2013-01-06  20     0    22  23 NaN  6
"""

六、Pandas--处理丢失值

dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan
"""
             A     B     C   D
2013-01-01   0   NaN   2.0   3
2013-01-02   4   5.0   NaN   7
2013-01-03   8   9.0  10.0  11
2013-01-04  12  13.0  14.0  15
2013-01-05  16  17.0  18.0  19
2013-01-06  20  21.0  22.0  23
"""

pd.dropna()--删除缺失值所在的行或列

df.dropna(
axis=0,     # 0: 对行进行操作; 1: 对列进行操作
how='any'   # 'any': 只要存在 NaN 就 drop 掉; 'all': 必须全部是 NaN 才 drop 
) 
"""
             A     B     C   D
2013-01-03   8   9.0  10.0  11
2013-01-04  12  13.0  14.0  15
2013-01-05  16  17.0  18.0  19
2013-01-06  20  21.0  22.0  23
"""

pd.fillna()--填充缺失值

df.fillna(value=0)
"""
             A     B     C   D
2013-01-01   0   0.0   2.0   3
2013-01-02   4   5.0   0.0   7
2013-01-03   8   9.0  10.0  11
2013-01-04  12  13.0  14.0  15
2013-01-05  16  17.0  18.0  19
2013-01-06  20  21.0  22.0  23
"""

pd.isnull()--判断缺失值,True为缺失值

df.isnull() 
"""
                A      B      C      D
2013-01-01  False   True  False  False
2013-01-02  False  False   True  False
2013-01-03  False  False  False  False
2013-01-04  False  False  False  False
2013-01-05  False  False  False  False
2013-01-06  False  False  False  False
"""

检查数据中是否存在NaN,如果存在返回True

np.any(df.isnull()) == True  
# True

六、Pandas--导入导出数据

pandas可读取格式:csv、excel、json、html、pickle等,详见官方文档

读取csv

#读取csv
data = pd.read_csv('student.csv')

#打印出data
print(data)

将资料存取成pickle

data.to_pickle('student.pickle')

七、Pandas--合并--concat

axis--合并方向(axis=0是预设值)

#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])

#concat纵向合并
res = pd.concat([df1, df2, df3], axis=0)

#打印结果
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 0  1.0  1.0  1.0  1.0
# 1  1.0  1.0  1.0  1.0
# 2  1.0  1.0  1.0  1.0
# 0  2.0  2.0  2.0  2.0
# 1  2.0  2.0  2.0  2.0
# 2  2.0  2.0  2.0  2.0

ignore_index (重置 index)

#承上一个例子,并将index_ignore设定为True
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)

#打印结果
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  2.0  2.0  2.0  2.0
# 7  2.0  2.0  2.0  2.0
# 8  2.0  2.0  2.0  2.0

join(合并方式)--join='outer'是预设值

#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])

#纵向"外"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='outer')

print(res)
#     a    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN
# 2  0.0  0.0  0.0  0.0  NaN
# 3  0.0  0.0  0.0  0.0  NaN
# 2  NaN  1.0  1.0  1.0  1.0
# 3  NaN  1.0  1.0  1.0  1.0
# 4  NaN  1.0  1.0  1.0  1.0


#承上一个例子
#纵向"内"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='inner')

#打印结果
print(res)
#     b    c    d
# 1  0.0  0.0  0.0
# 2  0.0  0.0  0.0
# 3  0.0  0.0  0.0
# 2  1.0  1.0  1.0
# 3  1.0  1.0  1.0
# 4  1.0  1.0  1.0

#重置index并打印结果
res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
print(res)
#     b    c    d
# 0  0.0  0.0  0.0
# 1  0.0  0.0  0.0
# 2  0.0  0.0  0.0
# 3  1.0  1.0  1.0
# 4  1.0  1.0  1.0
# 5  1.0  1.0  1.0

join_axes (依照 axes 合并)

#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])

#依照`df1.index`进行横向合并
res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])

#打印结果
print(res)
#     a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

#移除join_axes,并打印结果
res = pd.concat([df1, df2], axis=1)
print(res)
#     a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0

append (添加数据)--只有纵向合并,没有横向合并

#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])

#将df2合并到df1的下面,以及重置index,并打印出结果
res = df1.append(df2, ignore_index=True)
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0

#合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
res = df1.append([df2, df3], ignore_index=True)
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  1.0  1.0  1.0  1.0
# 7  1.0  1.0  1.0  1.0
# 8  1.0  1.0  1.0  1.0

#合并series,将s1合并至df1,以及重置index,并打印出结果
res = df1.append(s1, ignore_index=True)
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  2.0  3.0  4.0

八、Pandas--合并-- merge

用法:主要用于两组有key column的数据,统一索引的数据,通常也被用在Database的处理中。

依据一组key合并

#定义资料集并打印出
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                             'A': ['A0', 'A1', 'A2', 'A3'],
                             'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                              'C': ['C0', 'C1', 'C2', 'C3'],
                              'D': ['D0', 'D1', 'D2', 'D3']})

print(left)
#    A   B key
# 0  A0  B0  K0
# 1  A1  B1  K1
# 2  A2  B2  K2
# 3  A3  B3  K3

print(right)
#    C   D key
# 0  C0  D0  K0
# 1  C1  D1  K1
# 2  C2  D2  K2
# 3  C3  D3  K3

#依据key column合并,并打印出
res = pd.merge(left, right, on='key')

print(res)
     A   B key   C   D
# 0  A0  B0  K0  C0  D0
# 1  A1  B1  K1  C1  D1
# 2  A2  B2  K2  C2  D2
# 3  A3  B3  K3  C3  D3

依据两组key合并--合并时有4种方法how = ['left', 'right', 'outer', 'inner'],预设值how='inner'

#定义资料集并打印出
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                      'key2': ['K0', 'K1', 'K0', 'K1'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                       'key2': ['K0', 'K0', 'K0', 'K0'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']})

print(left)
#    A   B key1 key2
# 0  A0  B0   K0   K0
# 1  A1  B1   K0   K1
# 2  A2  B2   K1   K0
# 3  A3  B3   K2   K1

print(right)
#    C   D key1 key2
# 0  C0  D0   K0   K0
# 1  C1  D1   K1   K0
# 2  C2  D2   K1   K0
# 3  C3  D3   K2   K0

#依据key1与key2 columns进行合并,并打印出四种结果['left', 'right', 'outer', 'inner']
res = pd.merge(left, right, on=['key1', 'key2'], how='inner')
print(res)
#    A   B key1 key2   C   D
# 0  A0  B0   K0   K0  C0  D0
# 1  A2  B2   K1   K0  C1  D1
# 2  A2  B2   K1   K0  C2  D2

res = pd.merge(left, right, on=['key1', 'key2'], how='outer')
print(res)
#     A    B key1 key2    C    D
# 0   A0   B0   K0   K0   C0   D0
# 1   A1   B1   K0   K1  NaN  NaN
# 2   A2   B2   K1   K0   C1   D1
# 3   A2   B2   K1   K0   C2   D2
# 4   A3   B3   K2   K1  NaN  NaN
# 5  NaN  NaN   K2   K0   C3   D3

res = pd.merge(left, right, on=['key1', 'key2'], how='left')
print(res)
#    A   B key1 key2    C    D
# 0  A0  B0   K0   K0   C0   D0
# 1  A1  B1   K0   K1  NaN  NaN
# 2  A2  B2   K1   K0   C1   D1
# 3  A2  B2   K1   K0   C2   D2
# 4  A3  B3   K2   K1  NaN  NaN

res = pd.merge(left, right, on=['key1', 'key2'], how='right')
print(res)
#     A    B key1 key2   C   D
# 0   A0   B0   K0   K0  C0  D0
# 1   A2   B2   K1   K0  C1  D1
# 2   A2   B2   K1   K0  C2  D2
# 3  NaN  NaN   K2   K0  C3  D3

Indicator--indicator=True会将合并的记录放在新的一列。

#定义资料集并打印出
df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})

print(df1)
#   col1 col_left
# 0     0        a
# 1     1        b

print(df2)
#   col1  col_right
# 0     1          2
# 1     2          2
# 2     2          2

# 依据col1进行合并,并启用indicator=True,最后打印出
res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
print(res)
#   col1 col_left  col_right      _merge
# 0   0.0        a        NaN   left_only
# 1   1.0        b        2.0        both
# 2   2.0      NaN        2.0  right_only
# 3   2.0      NaN        2.0  right_only

# 自定indicator column的名称,并打印出
res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
print(res)
#   col1 col_left  col_right indicator_column
# 0   0.0        a        NaN        left_only
# 1   1.0        b        2.0             both
# 2   2.0      NaN        2.0       right_only
# 3   2.0      NaN        2.0       right_only

依据index合并

#定义资料集并打印出
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                     'B': ['B0', 'B1', 'B2']},
                     index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                      'D': ['D0', 'D2', 'D3']},
                     index=['K0', 'K2', 'K3'])

print(left)
#     A   B
# K0  A0  B0
# K1  A1  B1
# K2  A2  B2

print(right)
#     C   D
# K0  C0  D0
# K2  C2  D2
# K3  C3  D3

#依据左右资料集的index进行合并,how='outer',并打印出
res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
print(res)
#      A    B    C    D
# K0   A0   B0   C0   D0
# K1   A1   B1  NaN  NaN
# K2   A2   B2   C2   D2
# K3  NaN  NaN   C3   D3

#依据左右资料集的index进行合并,how='inner',并打印出
res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
print(res)
#     A   B   C   D
# K0  A0  B0  C0  D0
# K2  A2  B2  C2  D2

解决overlapping的问题

#定义资料集
boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})

#使用suffixes解决overlapping的问题
res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
print(res)
#    age_boy   k  age_girl
# 0        1  K0         4
# 1        1  K0         5

九、Pandas--plot出图

导入

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Series可视化

# 随机生成1000个数据
data = pd.Series(np.random.randn(1000),index=np.arange(1000))
 
# 为了方便观看效果, 我们累加这个数据
data.cumsum()

# pandas 数据可以直接观看其可视化形式
data.plot()

plt.show()

可以使用 plt.plot(x=, y=),把x,y的数据作为参数存进去,但是data本来就是一个数据,所以我们可以直接plot。 

DataFrame可视化

data = pd.DataFrame(
np.random.randn(1000,4),
index=np.arange(1000),
columns=list("ABCD")
)
data.cumsum()
data.plot()
plt.show()

常用方法:
    plot
    bar
    hist
    box
    kde
    area
    scatter
    hexbin

ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1')
# 将之下这个 data 画在上一个 ax 上面
data.plot.scatter(x='A',y='C',color='LightGreen',label='Class2',ax=ax)
plt.show()

你可能感兴趣的:(Pandas学习)