- 深入理解 OTSU 算法(大津法——最大类间方差法)
ZHauLee
机器学习算法计算机视觉人工智能
一、算法概述OTSU算法是一种用于图像分割的自动阈值选择算法,广泛应用于图像处理领域,特别是在二值化过程中。它是由日本学者大津展之(NobuyukiOtsu)在1979年提出,因此得名“OTSU算法”。二、算法原理OTSU算法的核心思想是通过遍历所有可能的阈值,将图像分割为前景(目标)和背景两部分,使得这两部分之间的类内方差(intra-classvariance)最小,或者说使得这两部分之间的类
- otsu算法_OTSU(大津法最大类间方差法)
weixin_39996742
otsu算法
OTSU基本介绍OTSU是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出,被誉为是图像分割中全局阈值选择的最佳方法。OTSU按照图像的灰度特性,将图像分成前景和背景两部分。因为方差可以看成是灰度分布均匀的一种度量,故前景和背景之间的类间方差越大,说明构成图像两部分的差别越大,当部分前景错分为背景或者部分背景被错分为前景时,都会导致两部分的差别变小。使用类间方差最大的分割一位置错分
- 大模型LLM基于PEFT的LoRA微调详细步骤---第一篇:模型下载篇
素雪风华
大模型下载Huggingface魔搭社区transformer
模型下载:HuggingFace官网:https://huggingface.co/----需要VPN魔搭社区:https://modelscope.cn/home----国内映射,不需要VPN写在篇始:国内关注方法一即可。其余几种都需要VPN,而且在服务器下载的速度有限~~。下一篇:微调详细流程以及环境...方法一:魔搭(modelscope)下载#需要安装pipinstallmodelscop
- 海量数据查询加速:Presto、Trino、Apache Arrow
晴天彩虹雨
apache大数据hive数据仓库
1.引言在大数据分析场景下,查询速度往往是影响业务决策效率的关键因素。随着数据量的增长,传统的行存储数据库难以满足低延迟的查询需求,因此,基于列式存储、向量化计算等技术的查询引擎应运而生。本篇文章将深入探讨Presto、Trino、ApacheArrow三种主流的查询优化工具,剖析其核心机制,并通过案例分析展示它们在实际业务中的应用。2.Presto:分布式SQL查询引擎2.1Presto介绍Pr
- Vue动态组件完全指南:原理、使用场景与最佳实践
北辰alk
前端vuevue.jsjavascript前端
文章目录一、什么是动态组件?核心特性:二、基本使用方式1.基础语法2.组件注册方式3.动态组件生命周期三、六大典型应用场景1.标签页切换系统2.多步骤表单流程3.动态仪表盘4.权限驱动视图5.插件系统集成6.服务端驱动界面四、高级使用技巧1.状态保持方案2.动态Props传递3.异步组件加载4.过渡动画支持五、性能优化策略1.缓存策略对比2.代码分割配置3.内存管理示例六、常见问题解决方案1.组件
- 【考研计算机网络】课堂笔记4 第四章 网络层_Network Layer
刘鑫磊up
#操作系统计算机网络计算机网络
文章目录:一:网络层的功能1.异构网络互联2.路由与转发功能3.拥塞控制二:数据交换方式三:路由算法1.静态路由与动态路由1.1静态路由算法(又称非自适应路由算法)1.2动态路由算法(又称自适应路由算法)2.动态路由算法2.1距离-向量路由算法2.2链路状态路由算法2.3层次路由四:IPV41.概述2.IPV4分组2.1IPV4分组格式2.2IP数据报分片2.3网络层转发分组的流程3IPV4地址与
- 大模型架构记录7-langchain
处女座_三月
LLMlangchain
一Langchain的应用目录:langchain的overviewprompttemplatemodelsandoutputparsers1.什么是langchain,为什么需要langchain?问题:如何没有langchain会怎么样?一个项目可能会包括:调用多个不同的大模型(gpt4,视频生成...)向量数据库数据类型(读取,trunk的切分...)langchain是面于大模型开发的框架
- 四季沐歌太阳能24小时全国统一售后官方受理客服中心
删了吧85
stormzookeeperhadoophive
四季沐歌太阳能官方售后服务热线电话400-8867-917;四季沐歌太阳能官方全国统一售后服务热线号码400-8867-917;四季沐歌太阳能官方24小时服务电话400-8867-917;四季沐歌太阳能官方全国售后服务客服电话:400-9988-698;四季沐歌太阳能官方全国售后服务中心电话:400-8867-917。1.北京区域北京四季沐歌太阳能售后服务电话:400-8867-917,2.上海区
- 解数独 (leetcode 37
JohnFF
leetcode算法职场和发展
leetcode系列文章目录一、核心操作二、外层配合操作三、核心模式代码总结使用二维递归,不管在哪一层都对矩阵进行全部遍历一、核心操作建立判断是否有效函数,对ij位置是否能放入k进行判断,由于此时还没有放置k,则可以直接对行列进行遍历,但是对于每一个小九宫格的遍历需要使用先除再乘的方式就可以将其重置为小九宫格的起始位置,再对其进行行列遍历即可建立二维回溯函数,从每一行开始遍历,再遍历每一行的每一列
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- java24种设计模式目录,为大家整理最全的24种设计模式详解,必收藏
高补
java24种设计模式目录
设计模式六大原则单一职责原则一个方法尽可能做一件事情,一般来说不应该让一个方法承担多个职责。单一职责原则的英文名称是SingleResponsibilityPrinciple,简称是SRP。单一职责原则的定义是:应该有且仅有一个原因引起类的变更。SRP的原话解释是:Thereshouldneverbemorethanonereasonforaclasstochange.单一职责原则提出了一个编写程
- 解码数字基因:数据架构如何重塑企业核心竞争力?——全面解析数据架构的战略价值与实践路径
领码科技
产业篇央国企技能篇数据架构数据模型数据资产目录企业数字化转型TOGAF
摘要:数据架构作为企业数字化转型的“基因图谱”,通过整合业务需求与IT实现,构建起数据流动的规则体系。本文系统剖析数据架构的四大核心组件(数据资产目录、数据模型、数据标准、数据分布)及其协同逻辑,揭示其在TOGAF4A架构中的桥梁作用,解读从架构规划到主数据落地的全生命周期管理。结合华为等标杆企业实践,提供兼具理论深度与实操指导的方法论框架,助力企业打造高质量数据底座。关键词:数据架构、数据模型、
- MySQL的覆盖索引
.晚安.
mysql数据库
MySQL的覆盖索引前言当一个索引包含了查询所需的全部字段时,就可以提高查询效率,这样的索引又被称之为覆盖索引。以MySQL常见的三种存储引擎为例:InnoDB、MyISAM、Memory,对于覆盖索引提高查询效率的方式均不同,下面让我们分别讲讲:InnoDB在InnoDB中,主键索引的叶子节点存储完整的数据行,称为聚簇索引,而唯一索引、普通索引、联合索引的叶子节点只存储索引字段和主键值,称之为二
- 智驾赋能新质生产力,开启“全感知时代”
高工智能汽车
汽车人工智能自动驾驶大数据
当前,人类社会正稳步踏入全领域智能化的崭新时代。工业智能化、农业智能化、商业智能化浪潮奔涌,全方位融入人们的工作与生活,成为推动社会进步的重要力量。在各行各业的高端技术前沿领域,设备智能化、自动化、无人化升级进程正不断加速。然而,环境感知与实时决策能力,始终是横亘在技术飞跃之路上的关键阻碍。这两大能力犹如高悬的“达摩克利斯之剑”,一旦成为短板,就会迅速演变为制约技术突破的“瓶颈”。只有精准、高效地
- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- Python真经:代码修仙录
zzzzjflzdvkk
python开发语言青少年编程python真经
第一章:Python真经的起源在八十年代末,九十年代初,荷兰国境之内,有一位名为GuidovanRossum的修士,于国家数学与计算机科学研究所中,悟出了一门无上真经——Python。此真经融合了诸多上古大能的智慧结晶,如ABC、Modula-3、C、C++、Algol-68、SmallTalk、Unixshell等,终成一体,化为Python真经。Python真经自诞生之日起,便遵循GPL(GN
- R+VIC模型融合实践技术应用及未来气候变化模型预测
科研的力量
水文地质土壤水文模型VIC模型
在气候变化问题日益严重的今天,水文模型在防洪规划,未来预测等方面发挥着不可替代的重要作用。目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地
- AI 行业发展趋势:科技创新引领未来变革
我是阿萌
畅聊AI人工智能科技学习
在当今数字化时代,人工智能(AI)行业正以前所未有的速度蓬勃发展,深刻地改变着我们的生活、工作和社会格局。从基础技术的突破到广泛的应用场景拓展,AI展现出了一系列令人瞩目的发展趋势,预示着一个充满无限可能的未来。一、技术创新持续突破模型规模与性能提升AI模型正朝着更大规模、更复杂的方向发展。以GPT系列为代表的大语言模型,参数数量不断攀升,从GPT-2的15亿参数到GPT-4的万亿级参数,模型的语
- 离散数学-万字课堂笔记-期末考试-考研复习-北航离散数学1
桃木山人
考研数学离散数学期末
第一章逻辑语言1.1逻辑运算1.2命题逻辑合式公式1.3谓词逻辑合式公式1.4自然语言命题第二章命题逻辑语义2.1命题合式公式语义2.2推论式与等价式的语义2.3变换合式公式的语义2.4命题公式范式2.5等式演算2.6完全集第三章谓词逻辑语义3.1谓词合式公式语义3.2推论关系和相等关系3.3前束范式与斯科伦范式3.4一阶理论语言3.5论域、结构与模型第四章逻辑公理系统4.1形式系统4.2命题逻辑
- 使用Redis实现分布式锁的技术详解
智能编织者
redis分布式数据库
使用Redis实现分布式锁的技术详解一、引言二、分布式锁的基本概念三、Redis实现分布式锁的原理1.SETNX命令2.SET命令的扩展参数3.Lua脚本保证原子性四、Redis实现分布式锁的步骤1.引入Redis依赖2.加锁实现3.释放锁实现4.设置锁过期时间五、代码演示1.引入依赖2.加锁与释放锁的工具类3.使用示例六、注意事项与优化1.死锁问题2.锁竞争与重试机制一、引言在分布式系统中,多个
- Prompt工程:大模型沟通指南(人工智能到大模型)
Harry技术
AIprompt人工智能
文章目录人工智能到大模型机器学习深度学习大模型Prompt工程:大模型沟通的桥梁在人工智能的广袤领域中,大模型无疑是最为璀璨的明珠之一。它仿佛是一座连接人类与人工智能的桥梁,让我们能够更加深入地探索和利用人工智能的强大能力。而要实现与大模型的高效沟通,Prompt工程扮演着至关重要的角色。让我们一起走进Prompt工程的奇妙世界,探寻大模型沟通的奥秘。人工智能到大模型“人工智能是一种模拟人类智能的
- C++内存管理秘籍:深入解析与实战代码示例
黑猫Teng
编程学习c++java开发语言
C++内存管理秘籍:深入解析与实战代码示例一、内存管理的基本概念二、内存泄漏与野指针三、智能指针:现代C++的内存管理利器四、实战代码示例示例1:传统动态内存管理示例2:使用`std::unique_ptr`示例3:使用`std::shared_ptr`五、总结在C++编程的世界里,内存管理是一项既基础又核心的技能。它直接关系到程序的性能、稳定性和可维护性。不同于一些高级语言自动管理内存的特性,C
- MySQL慢SQL优化方案详解:从诊断到根治的完整指南
jiajia651304
mysqlsqlffmpeg
MySQL慢SQL优化方案详解:从诊断到根治的完整指南一、慢SQL的致命影响当数据库响应时间超过500ms时,系统将面临三大灾难链式反应:用户体验崩塌页面加载超时率上升37%用户跳出率增加52%核心业务转化率下降29%系统稳定性危机连接池耗尽风险提升4.8倍主从同步延迟突破10秒阈值磁盘IO利用率长期超90%运维成本飙升DBA故障处理时间增加65%硬件扩容频率提高3倍夜间告警量激增80%通过监控系
- CCF CSP 第30次(2023.05)(2_矩阵运算_C++)(暴力破解)(矩阵相乘)
Dream it possible!
CCFCSP认证矩阵c++算法
CCFCSP第30次(2023.05)(2_矩阵运算_C++)题目背景:题目描述:输入格式:输出格式:样例输入样例输出:样例解释:子任务:提示:解题思路:思路一(暴力破解):代码实现代码实现:部分代码解读时间限制:5.0s空间限制:512.0MB题目背景:Softmax(Q×KT/√d)×V是Transformer中注意力模块的核心算式,其中Q、K和V均是n行d列的矩阵,KT表示矩阵K的转置,×表
- 每天一道算法题【蓝桥杯】【下降路径最小和】
桦0
题解算法蓝桥杯c++leetcode
思路使用dp表来解决问题为了方便填写dp表,多初始化一圈格子状态转移方程dp[i][j]=min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]))+matrix[i-1][j-1];每个元素等于上一行元素最小的那个加上本格元素最后遍历最后一行dp表找最小值for(intj=1;jusingnamespacestd;classSolution{public:int
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.06.25-2024.07.01
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习自然语言处理大语言模型LLM
文章目录~1.AutoCherry-Picker:LearningfromHigh-qualityGenerativeDataDrivenbyLanguage2.BioMNER:ADatasetforBiomedicalMethodEntityRecognition3.BESTOW:EfficientandStreamableSpeechLanguageModelwiththeBestofTwoW
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- 十分钟学会微调大语言模型
喝不喝奶茶丫
语言模型人工智能自然语言处理大模型大模型应用AI大模型微调
在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的TextGenerationWe
- 输入URL到页面展示的核心逻辑链
賢843
软件测试理论基础python
浏览器输入url到页面展示过程(https请求过程)DNS解析域名得到服务器ip地址TCP三次握手TCP三次握手-CSDN博客客户端发送http请求服务器响应请求客户端渲染页面TCP四次挥手两个核心概念FIN包:FIN=1,表示请求终止连接(相当于说“我要挂电话了!”)。ACK包:ACK=1,表示确认收到数据(相当于说“我收到了!”)。四次挥手流程第一次挥手:客户端发送FIN=1的包给
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,