利用GBDT构造新特征,与LR融合

GBDT构建新的特征思想

特征决定模型性能上界,例如深度学习方法也是将数据如何更好的表达为特征。如果能够将数据表达成为线性可分的数据,那么使用简单的线性模型就可以取得很好的效果。GBDT构建新的特征也是使特征更好地表达数据。

主要参考Facebook[1],原文提升效果:

在预测Facebook广告点击中,使用一种将决策树与逻辑回归结合在一起的模型,其优于其他方法,超过3%。

主要思想:GBDT每棵树的路径直接作为LR输入特征使用。

用已有特征训练GBDT模型,然后利用GBDT模型学习到的树来构造新特征,最后把这些新特征加入原有特征一起训练模型。构造的新特征向量是取值0/1的,向量的每个元素对应于GBDT模型中树的叶子结点。当一个样本点通过某棵树最终落在这棵树的一个叶子结点上,那么在新特征向量中这个叶子结点对应的元素值为1,而这棵树的其他叶子结点对应的元素值为0。新特征向量的长度等于GBDT模型里所有树包含的叶子结点数之和。

利用GBDT构造新特征,与LR融合_第1张图片

上图为混合模型结构。输入特征通过增强的决策树进行转换。 每个单独树的输出被视为稀疏线性分类器的分类输入特征。 增强的决策树被证明是非常强大的特征转换。

例子1:上图有两棵树,左树有三个叶子节点,右树有两个叶子节点,最终的特征即为五维的向量。对于输入x,假设他落在左树第一个节点,编码[1,0,0],落在右树第二个节点则编码[0,1],所以整体的编码为[1,0,0,0,1],这类编码作为特征,输入到线性分类模型(LR or FM)中进行分类。

论文中GBDT的参数,树的数量最多500颗(500以上就没有提升了),每棵树的节点不多于12。

GBDT与LR融合方案

在CTR预估中,如何利用AD ID是一个问题。

直接将AD ID作为特征建树不可行,而onehot编码过于稀疏,为每个AD ID建GBDT树,相当于发掘出区分每个广告的特征。而对于曝光不充分的样本即长尾部分,无法单独建树。

综合方案为:使用GBDT对非ID和ID分别建一类树。

非ID类树:

不以细粒度的ID建树,此类树作为base,即这些ID一起构建GBDT。即便曝光少的广告、广告主,仍可以通过此类树得到有区分性的特征、特征组合。

ID类树:

以细粒度 的ID建一类树(每个ID构建GBDT),用于发现曝光充分的ID对应有区分性的特征、特征组合。如何根据GBDT建的两类树,对原始特征进行映射?以如下图3为例,当一条样本x进来之后,遍历两类树到叶子节点,得到的特征作为LR的输入。当AD曝光不充分不足以训练树时,其它树恰好作为补充。

方案如图:

利用GBDT构造新特征,与LR融合_第2张图片

其中kaggle竞赛一般树的数目最多为30,通过GBDT转换得到特征空间相比于原始ID低了很多。

你可能感兴趣的:(利用GBDT构造新特征,与LR融合)