FutureTask类
先看下FutureTask类的继承图,它同时实现了Future类和Runnable类,也就是说它实际上是可以被当做一个Runable传给Thread类执行的
由FutureTask的构造方法可以看到,该类需要一个Callable接口来初始化
public FutureTask(Callable callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
回顾上一篇文章JUC源码剖析__ThreadPoolExecutor,当向线程池submit一个Callable对象时,AbstractExecutorService.submit
会使用Callable创建一个FutureTask实例,线程池的Worker线程最终会执行这个FutureTask的Runnable.run
方法
FutureTask.get方法最终是怎么获取到Callable.call的返回值的?
先来看看FutureTask.get方法的源码
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}
当状态小于等于COMPLETING
时,则阻塞线程等待完成;否则就调用report返回FutureTask的outcome
字段。也就是说FutureTask最终会把结果保存在outcome
字段中
FutureTask是怎么把callable的结果保存到outcome字段中的呢?
之前的文章提到过线程池的Worker线程最终会执行这个FutureTask的Runnable.run
方法
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
//为了方便起见把 outcome字段的定义写在这里
private Object outcome; // non-volatile, protected by state reads/writes
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
可以看到当调用Callable.call
方法返回结果后,会执行set(result)
把结果set进outcome
字段中
这里刚开始看的时候觉得很奇怪:
- 为什么
outcome
字段没有设置成volatile
? - 为什么在
outcome = v;
前要把状态设置成COMPLETING
,而outcome = v;
完后又立刻把状态设置成NORMAL
呢?
直到网上找到了这篇文章why outcome object in FutureTask is non-volatile?
这里有个很巧妙的设计,就是利用java的happends before中的传递原则,使得在不使用锁的情况下,保证其他线程读到state=NORMAL
时,该线程一定能读到outcome的最新值
当Future.get方法阻塞时,当完成任务后是怎么唤醒阻塞线程的?
文章开头提到过,调用FutureTask.get
方法时,当状态小于等于COMPLETING
时,则阻塞线程等待完成
/** Treiber stack of waiting threads */
private volatile WaitNode waiters;
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
又是一个自旋操作,值得一提的是这段代码:
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
这个判断其实是为了处理protected void set(V v)
中的临时状态的,当FutureTask出现COMLETING状态时,其实任务已经执行完了,只不过是在保存结果时发生了线程切换,所以只要很短暂的等待就可以,这里使用Thread.yield()
让出线程的执行权
当第一次循环时,如果任务还没有处理完,则会新建一个WaitNode
,WaitNode
中保存了当前线程;
当第二次循环时,如果任务还没有出来完,则会把这个WaitNode
插入到waiters
的栈顶,并通过调用LockSupport.parkNanos
或者LockSupport.park
阻塞当前线程。而唤醒线程就是通过waiters
栈中元素保存的Thread来唤醒。这里可以发现,如果有多个线程都调用FutureTask.get方法且都阻塞的话,则线程会按调用顺序插入waiters
栈中
如何通过WaitNode唤醒阻塞的线程?
在protected void set(V v)
中保存callable的结果后会调用private void finishCompletion()
方法,程序就是通过这个方法来把waiters
栈中的阻塞线程按照后进先出的顺序来逐个调用LockSupport.unpark
释放掉
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}