守恒定律--by 费世煌

知识点

  • 动量守恒、角动量守恒的直观感受
  • 动量守恒的方程
  • 角动量守恒的方程
    • 约定好正方向
    • 初态时,写出各个物件的角动量(注意正负号)
    • 末态时,写出各个物件的角动量(注意正负号)
    • 然后,列方程为:
tip

  • 相比对单词的辨析进行死记硬背,不如记几个例句。
  • 相比对物理概念进行全方位多角度的分析,不如记几个模型。
表达题

  • 动量守恒和角动量守恒的充要条件分别是

解答:动量守恒的充要条件是:该系统不受外力或合外力为零

​ 角动量守恒的充要条件是:该系统的合力矩为零

  • 借助具体例子培养直观认识。动量守恒的充要条件是合外力为零。作为近似,实际生活中,内力比外力强很多时,也认为动量守恒。下面常见的物理模型中,

    (1) 爆炸瞬间;
    (2) 两个小球非弹性碰撞(部分动能转化为内能)瞬间;
    (3) 子弹打击用轻绳悬挂的小球瞬间;
    (4) 光滑地面上有车,车上有人,人在车内走动。
    (5) 小球撞击墙壁反弹。
    (6) 子弹打击用轻杆悬挂的小球瞬间;
    请思考,其中动量守恒的有(1、2、3、4 ),记住这些模型,会减少很多困扰。

解答:(1):爆炸瞬间,内力远远大于外力,故此爆炸瞬间动量守恒

​ (2):非弹性碰撞时,机械能不守恒,但满足该小球组成的系统守恒

​ (3):子弹和小球的整体不受合外力,绳子不是刚体,所以子弹和小球的系统不受外力

​ (4):车和人在光滑平面上是受不受合外力的

​ (5):小球和墙壁不构成一个整体,小球受来自墙壁的外力

​ (6):轻杆是刚体,那一瞬间杆和子弹的系统受到外力,所以动量不守恒

  • 借助具体例子培养直观认识。角动量守恒的充要条件是合外力矩为零。下面常见的物理模型中,
    (1) 地球绕着太阳转;
    (2) 光滑桌面上用轻绳拽着做圆周运动;
    (3) 光滑冰面上的芭蕾舞旋转;
    (4) 子弹打击用轻杆悬挂着的小球瞬间。
    (5) 小球打击旋转的滑轮的瞬间。
    (6) 绕同一转轴转动的两个飞轮,彼此啮合的瞬间;
    请思考,其中角动量守恒的有(1、2、 3、5、6),记住这些模型,会减少很多困扰。

解答: (1):地球受到来自太阳的万有引力的牵引,不受外力,合力矩为零,所以角动量守恒

​ (2):拽着做圆周运动的时候,不受合外力,力矩为零,所以角动量恒定

​ (3):芭蕾舞的旋转不受外力矩,所以角动量为恒定

​ (4):该系统受到合外力,所以合外力矩为零,角动量守恒

​ (5):系统的角动量恒定,不受外力矩

​ (6):在啮合的过程中,该系统不存在外力矩,所以角动量守恒

  • 请记下角动量的核心公式,在角动量守恒中会反复使用。圆周运动的质点和定轴转动的刚体,角动量分别为

解答:
质点:
刚体:

  • 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为。然后她将两臂收回,使转动惯量减少为.设这时她转动的角速度变为,则角动量守恒的方程为

解答:

  • 一圆盘()绕垂直于盘面的水平光滑固定轴O转动,转速为. 如图射来一个质量为,速度大小为的子弹,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度。约定逆时针转时角动量为正。
    则初态时,将子弹速度沿切向(等效成圆周运动,从而得到角动量)和法向分解,其切向速度和角动量分别为
    (1) , ;
    (2) , ;
    (3) , ;
    初态的总角动量为
    (4) ;
    (5) ;
    末态的总角动量为
    (6) ;
    (7) ;
    核心方程是为
    (8) ;
    (9) ;
    以上正确的是( )

解答:(3)、(4)、(7)、(9)

守恒定律--by 费世煌_第1张图片
IMG_20190323_204242.jpg.JPG
  • 一圆盘()绕垂直于盘面的水平光滑固定轴O转动,转速为. 如图射来两个质量同为,速度大小同为,方向相反,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度。约定逆时针转时角动量为正。
    则初态时,总角动量为
    (1) ;
    (2) ;
    末态的总角动量为
    (3) ;
    (4) ;
    核心方程是为
    (5) ;
    (6) ;
    以上正确的是

解答:(1)、(2)、(5)


守恒定律--by 费世煌_第2张图片
![IMG_20190323_203423.jpg](https://upload-images.jianshu.io/upload_images/16380069-ff2f19461d6fe54e.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
  • 角动量守恒的计算题:有一质量为、长为的均匀细棒,平放在光滑的水平桌面上,以角速度绕通过端点O顺时针转动。另有质量为,初速为的小滑块,与棒的底端点相撞。碰撞后的瞬间,细棒反转,且角速度为;小滑块反向,速率为,如图所示。规定顺时针转动方向为正。
    则初态时,总角动量为
    (1) ;
    (2) ;
    末态的总角动量为
    (3) ;
    (4) ;
    核心方程是为
    (5) ;
    (6) ;
    以上正确的是

解答:(2)、(4)、(6)


守恒定律--by 费世煌_第3张图片
IMG_20190323_203423.jpg

你可能感兴趣的:(守恒定律--by 费世煌)