采样分组
为了实现输出的全局排序,可以对温度数据进行分组处理,实现多个reduce处理,组间有序,组内有序,从而实现全局有序。而如何分组才能保证每个reduce分到的数据差不多,这样作业中的任务执行时间也差不多。例如将处理温度数据,要求温度按顺序输出。分成4组个分组,<-10℃,-10℃~0℃, 0℃~10℃,>10℃。
<-10℃ |
-10℃~0℃ |
0℃~10℃ |
>10℃ |
1% |
%10 |
29% |
60% |
显然这样分区后,每个ruduce获取的数据量相差很大。调整下分区后使每个分区获取到的数据量差不多,reduce任务分析起来处理时间差不多。而这些分区的边界值就需要通过采样来决定。
<-4℃ |
4℃~13℃ |
13℃~25℃ |
>5℃ |
23% |
%24 |
27% |
26% |
用InputSampler对象对输入数据进行采样,得到数据的采样区间分隔值,将这些值写入到一个文件中。然后TotalOrderPartitioner类读取这些边界值作为分区依据。采样分组就是通过采集输入的部分数据,得到相对均匀的分布区间,每个区间的数据量差不多。InputSampler是采样方式有三种:前n条记录采样SplitSample,随机采样RandomSample,固定间隔采样?IntervalSample。
类名称 |
采样方式 |
构造方法 |
效率 |
SplitSampler(int numSamples, int maxSplitsSampled) |
对输入分片均匀采样,每个分片取前n个。 |
采样总数,用于采样的分片数 |
最高 |
RandomSampler(double freq, int numSamples, int maxSplitsSampled) |
遍历所有数据,随机采样 |
采样频率,采样总数,划分数 |
最低 |
IntervalSampler(double freq, int maxSplitsSampled) |
固定间隔采样对有序的数据十分适用 |
采样频率,划分数 |
中 |
(4)InputSampler原理
1)InputSampler是个hadoop任务类,继承Configured,实现Tool接口,main函数作为入口函数,run函数用来执行任务,InputSampler还有另外一个writePartitionFile函数,它是将采样的值排序,然后按照分区的数量进行划分,得到边界值写入分区文件,其定义为如下:
public class InputSamplerextends Configured implements Tool {
private static final Log LOG = LogFactory.getLog(InputSampler.class);
static int printUsage() {
System.out.println("sampler -r\n [-inFormat ]\n [-keyClass
//有numPartitions个reduce任务就有numPartitions分区,产生numPartitions个文件
int numPartitions = job.getNumReduceTasks();
//获取采样的值
K[] samples = (Object[])sampler.getSample(inf, job);
LOG.info("Using " + samples.length + " samples");
//获取排序函数,对采样值进行排序
RawComparatorcomparator = job.getSortComparator();
Arrays.sort(samples, comparator);
//获取分区文件的路径
Path dst = new Path(TotalOrderPartitioner.getPartitionFile(conf));
FileSystem fs = dst.getFileSystem(conf);
//如果存在,删除原来的分区文件
if (fs.exists(dst)) {
fs.delete(dst, false);
}
创建写入对象,创建新的文件
Writer writer = SequenceFile.createWriter(fs, conf, dst, job.getMapOutputKeyClass(), NullWritable.class);
NullWritable nullValue = NullWritable.get();
//获取间隔值的步长,已经排好序之后,每隔stepSize取一个值作为分组的边界值
float stepSize = (float)samples.length / (float)numPartitions;
int last = -1;
for(int i = 1; i < numPartitions; ++i) {
int k;
for(k = Math.round(stepSize * (float)i); last >= k && comparator.compare(samples[last], samples[k]) == 0; ++k) {
;
}
writer.append(samples[k], nullValue);
last = k;
}
writer.close();
}
//run函数执行采样任务,入参是采样类型
public int run(String[] args) throws Exception {
Job job = new Job(this.getConf());
ArrayListotherArgs = new ArrayList();
InputSampler.Samplersampler = null;
for(int i = 0; i < args.length; ++i) {
try {
if ("-r".equals(args[i])) {
++i;
job.setNumReduceTasks(Integer.parseInt(args[i]));
} else if ("-inFormat".equals(args[i])) {
++i;
job.setInputFormatClass(Class.forName(args[i]).asSubclass(InputFormat.class));
} else if ("-keyClass".equals(args[i])) {
++i;
job.setMapOutputKeyClass(Class.forName(args[i]).asSubclass(WritableComparable.class));
} else if ("-splitSample".equals(args[i])) {
++i;
int numSamples = Integer.parseInt(args[i]);
++i;
int maxSplits = Integer.parseInt(args[i]);
if (0 >= maxSplits) {
maxSplits = 2147483647;
}
分区采样
sampler = new InputSampler.SplitSampler(numSamples, maxSplits);
} else {
int maxSplits;
double pcnt;
if ("-splitRandom".equals(args[i])) {
++i;
pcnt = Double.parseDouble(args[i]);
++i;
maxSplits = Integer.parseInt(args[i]);
++i;
int maxSplits = Integer.parseInt(args[i]);
if (0 >= maxSplits) {
maxSplits = 2147483647;
}
//随机采样
sampler = new InputSampler.RandomSampler(pcnt, maxSplits, maxSplits);
} else if ("-splitInterval".equals(args[i])) {
++i;
pcnt = Double.parseDouble(args[i]);
++i;
maxSplits = Integer.parseInt(args[i]);
if (0 >= maxSplits) {
maxSplits = 2147483647;
}
//间隔采样
sampler = new InputSampler.IntervalSampler(pcnt, maxSplits);
} else {
otherArgs.add(args[i]);
}
}
} catch (NumberFormatException var10) {
System.out.println("ERROR: Integer expected instead of " + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException var11) {
System.out.println("ERROR: Required parameter missing from " + args[i - 1]);
return printUsage();
}
}
// reduce任务数量不能<=2,否则分组就没有了任何意义
if (job.getNumReduceTasks() <= 1) {
System.err.println("Sampler requires more than one reducer");
return printUsage();
} else if (otherArgs.size() < 2) {
System.out.println("ERROR: Wrong number of parameters: ");
return printUsage();
} else {
if (null == sampler) {
//默认采用随机采样
sampler = new InputSampler.RandomSampler(0.1D, 10000, 10);
}
Path outf = new Path((String)otherArgs.remove(otherArgs.size() - 1));
TotalOrderPartitioner.setPartitionFile(this.getConf(), outf);
Iterator i$ = otherArgs.iterator();
while(i$.hasNext()) {
String s = (String)i$.next();
FileInputFormat.addInputPath(job, new Path(s));
}
//默任执行写入分区文件
writePartitionFile(job, (InputSampler.Sampler)sampler);
return 0;
}
}
public static void main(String[] args) throws Exception {
InputSampler, ?> sampler = new InputSampler(new Configuration());
int res = ToolRunner.run(sampler, args);
System.exit(res);
}
public interface Sampler{
K[] getSample(InputFormatvar1, Job var2) throws IOException, InterruptedException;
}
}
2)InputSampler类定义个一个采样接口Sample接口,定义方法getSample,SplitSample、RandomSample、IntervalSample类都实现了这个接口,采用不同的方法获取采样值。三个类都是InputSampler的内部静态类,实现了getSample方法,下面分别阐述。
SplitSample类定义
总的采样数除以用于采样的分片数量,得到每个分片的取样数n,采取每个分片的前n个数据。
public static class SplitSamplerimplements InputSampler.Sampler {
protected final int numSamples;
protected final int maxSplitsSampled;
public SplitSampler(int numSamples) {
this(numSamples, 2147483647);
}
public SplitSampler(int numSamples, int maxSplitsSampled) {
this.numSamples = numSamples;//采样总数
this.maxSplitsSampled = maxSplitsSampled;// 用于取样的分片数量,不大于实际分片数
}
public K[] getSample(InputFormatinf, Job job) throws IOException, InterruptedException {
//获取分片数
Listsplits = inf.getSplits(job);
//采样总数创建数组
ArrayListsamples = new ArrayList(this.numSamples);
//用于取样的分片数量
int splitsToSample = Math.min(this.maxSplitsSampled, splits.size());
//每个分片需要采集多少个数据
int samplesPerSplit = this.numSamples / splitsToSample;
long records = 0L;
for(int i = 0; i < splitsToSample; ++i) {
TaskAttemptContext samplingContext = new TaskAttemptContextImpl(job.getConfiguration(), new TaskAttemptID());
//创建读取记录的reader
RecordReaderreader = inf.createRecordReader((InputSplit)splits.get(i), samplingContext);
reader.initialize((InputSplit)splits.get(i), samplingContext);
while(reader.nextKeyValue()) {
//采样数据写入smaple数组
samples.add(ReflectionUtils.copy(job.getConfiguration(), reader.getCurrentKey(), (Object)null));
++records;
//每个分片只采集前个samplesPerSplit数据,超出则退出
if ((long)((i + 1) * samplesPerSplit) <= records) {
break;
}
}
reader.close();
}
return (Object[])samples.toArray();
}
}
IntervalSample类定义
遍历用于采样的分片数据,根据采样率来等间隔采集数据,例如采样率是0.1,则每隔10个采集一个数据。
public static class IntervalSamplerimplements InputSampler.Sampler {
protected final double freq;
protected final int maxSplitsSampled;
public IntervalSampler(double freq) {
this(freq, 2147483647);
}
public IntervalSampler(double freq, int maxSplitsSampled) {
this.freq = freq;//采样率
this.maxSplitsSampled = maxSplitsSampled;//用于采样的分片数
}
public K[] getSample(InputFormatinf, Job job) throws IOException, InterruptedException {
Listsplits = inf.getSplits(job);
ArrayListsamples = new ArrayList();
int splitsToSample = Math.min(this.maxSplitsSampled, splits.size());
long records = 0L;//遍历的记录数
long kept = 0L;//采集的记录数
for(int i = 0; i < splitsToSample; ++i) {
TaskAttemptContext samplingContext = new TaskAttemptContextImpl(job.getConfiguration(), new TaskAttemptID());
RecordReaderreader = inf.createRecordReader((InputSplit)splits.get(i), samplingContext);
reader.initialize((InputSplit)splits.get(i), samplingContext);
while(reader.nextKeyValue()) {
//假设freq为0.1,第一次循环,record为1,kept为0,0/1小于freq0.1,第一条记录会被采到,kept变为1;第二次循环,record=2,kept=1,1/2大于freq0.1,第二条记录不会取到;kept/records的值从1/2,1/3,1/4……1/10大于等于freq0.1,第11条记录时,1/11小于0.1,第11条记录会被取到,kept变成2,只有到2/21时,才会取第三条数据,所以是每隔10条取一个,是等间隔取数据。
++records;
if ((double)kept / (double)records < this.freq) {
samples.add(ReflectionUtils.copy(job.getConfiguration(), reader.getCurrentKey(), (Object)null));
++kept;
}
}
reader.close();
}
return (Object[])samples.toArray();
}
}
RandomSample类定义
随机采样输入参数是采样频率,采样总数,用于采样的的分片数。遍历用于采样的分片中的记录,如果随机数小于采样率则进行采样,添加进入采样数组,或者更换已满数组中的值。同时减小采样率,越往后面,采集到数据的概率越小。
public static class RandomSamplerimplements InputSampler.Sampler {
protected double freq;
protected final int numSamples;
protected final int maxSplitsSampled;
public RandomSampler(double freq, int numSamples) {
this(freq, numSamples, 2147483647);
}
public RandomSampler(double freq, int numSamples, int maxSplitsSampled) {
this.freq = freq;//采样率
this.numSamples = numSamples;//采样总数
this.maxSplitsSampled = maxSplitsSampled;//用于采样的分片数
}
public K[] getSample(InputFormatinf, Job job) throws IOException, InterruptedException {
Listsplits = inf.getSplits(job);
ArrayListsamples = new ArrayList(this.numSamples);//采样保存申请空间
int splitsToSample = Math.min(this.maxSplitsSampled, splits.size());//计算用于采样的分片数
Random r = new Random();//创建随机对象
long seed = r.nextLong();//创建随机种子
r.setSeed(seed);
InputSampler.LOG.debug("seed: " + seed);
int i;//将分片打乱顺序,随机获取第j个分片,和第i个分片进行交换
for(i = 0; i < splits.size(); ++i) {
InputSplit tmp = (InputSplit)splits.get(i);
int j = r.nextInt(splits.size());
splits.set(i, splits.get(j));
splits.set(j, tmp);
}
//循环从用于采样的分片中随机获取数据,直到采样分片遍历完(可能数量不够numSamples个),或者已经采集到numSamples个数据
for(i = 0; i < splitsToSample || i < splits.size() && samples.size() < this.numSamples; ++i) {
TaskAttemptContext samplingContext = new TaskAttemptContextImpl(job.getConfiguration(), new TaskAttemptID());
RecordReaderreader = inf.createRecordReader((InputSplit)splits.get(i), samplingContext);
reader.initialize((InputSplit)splits.get(i), samplingContext);
while(reader.nextKeyValue()) {
//随机double值小于采样率,符合条件,进行获取当前值,这样有可能,遍历所有的值,可能没有获取到指定的numSamples记录?
if (r.nextDouble() <= this.freq) {
//采样数组中数据还不足则add进去,如果已经采集到了numSamples个记录,则随机替换set到sample数组中
if (samples.size() < this.numSamples) {
samples.add(ReflectionUtils.copy(job.getConfiguration(), reader.getCurrentKey(), (Object)null));
} else {
int ind = r.nextInt(this.numSamples);
if (ind != this.numSamples) {
samples.set(ind, ReflectionUtils.copy(job.getConfiguration(), reader.getCurrentKey(), (Object)null));
}
//每采样到一个数据,采样率会减小,r.nextDouble() <= this.freq采样到的数据概率会减小
this.freq *= (double)(this.numSamples - 1) / (double)this.numSamples;
}
}
}
reader.close();
}
return (Object[])samples.toArray();
}
}