CV2 --- 处理图像

环境:Anaconda 3.6

首先安装cv2的包: pip3 install opencv-python

import cv2

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

def img_show(img_name, img):

cv2.imshow(img_name, img)

cv2.waitKey(0)  # 只显示第一帧

cv2.destroyAllWindows()  # 销毁所有的窗口

img_file = 'sudoku.png'

img = cv2.imread(img_file) # 已彩色模式读取图像文件

rows, cols, ch = img.shape # 获取图像形状

img_show('raw img', img)

# 图像缩放

img_scale = cv2.resize(img, None, fx=0.6, interpolation=cv2.INTER_CUBIC)

img_show('scale img', img_scale)

# 图像平移

M = np.float32([[1,0,100],[0,1,50]]) # x=>100, y=>50

img_transform = cv2.warpAffine(img, M, (rows,cols)) # 平移图像

img_show('transform img', img_transform)

# 图像旋转

M = cv2.getRotaionMatrix2D((cols/2, rows/2), 45, 0.6)

img_rotation = cv2.warpAffine(img, M, (cols, rows))

img_show('rotation img', img_rotation)

# 透视转化

pst1 = np.float32([[x1,y1],[x2,y2], [x3,y3], [x4,y4]]) # 转换前四个点坐标

pst2 = np.float32([[x5,y5],[x6,y6], [x7,y7], [x8,y8]]) # 转换后四个点坐标

M = cv2.getPerspectiveTransform(pst1, pst2)

img_perspective = cv2.warpPerspective(img, M, (x,y))

img_show('perspective img', img_perspective)

# 转化为灰度图片

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 图像转灰色

img_show('gray img', gray_img)

# 边缘检测

edge_img = cv2.Canny(img, 50,100)

img_show('edge img', edge_img)

# 二值化处理

ret, th1 = cv2.threshold(gray_img, 127, 255, cv2.THRESH_BINARY)

# 127为阀值,255为(超过或小于阀值)赋予的值,THRESH_BINARY类型

th2 = cv2.adaptive(gray_img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11,2)

#均值阀值,11=>图像分块数, 2=>计算阀值的常数项

th3 = cv2.adaptive(gray_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11,2) # 自适应高斯阀值

titles = ['GRAY_IMG', 'GLOBAL img', 'mean_img', 'gussian img']

imgs = [gray_img, th1, th2, th3]

for i in range(4):

plt.subplot(2,2, i+1),plt.imshow(imgs[i], 'gray')  # 以灰度模式展开各个子网格

plt.title(titles[i])​

plt.xticks([]), plt.yticks([]) # 设置坐标显示值

plt.suptitle('img') # 表头

plt.show() # 显示图像

# 图像平滑

kernel = np.ones((5,5), np.float32) /25 # 设置平滑内核大小

img_smoth_filter2D = cv2.filter2D(img, -1, kernel) # 2D 卷积法

img_smoth_blur = cv2.blur(img, (5,5))  # 平均法

img_smoth_gaussianblur = cv2.GaussianBlur(img, (5,5), 0) # 高斯模糊

img_smoth_medianblur = cv2.medianBlur(img, 5) # 中值法

titles = ['filter2D', 'blur', 'GaussianBlur', 'medianBlur']

imges = [img_smoth_filter2D, img_smoth_blur, img_smoth_gaussianblur, img_smoth_medianblur]

for i in range(4):

plt.subplot(2,2,i+1), plt.imshow(imges[i])

plt.title(titles[i])

plt.xticks([]), plt.yticks([])

plt.suptitle('smoth images')

plt.show()

# 形态学处理

img2 = cv2.imread('j.png', 0) # 以灰度模式读取图像

kernel = np.ones((5,5), np.uint8)

erosion = cv2.erode(img2, kernel, iterations=1) # 腐蚀

dilation = cv2.dilate(img2, kernel, iterations=1) # 膨胀

plt.subplot(1,3,1), plt.imshow(img2, 'gray')

plt.subplot(1,3,2), plt.imshow(erosion, 'gray')

plt.subplot(1,3,3), plt.imshow(dilation, 'gray')

plt.show()


ps:个人博客链接:https://www.onexing.cn

你可能感兴趣的:(CV2 --- 处理图像)