Handler在Android开发中无处不在,它的使用方式想必大家都已经很熟练了,这里主要是分析它的原理。
我们从ActivityThread#main方法开始,一步步理解Handler的机制。相关代码如下:
/frameworks/base/core/java/android/app/ActivityThread.java
public static void main(String[] args) {
...
Looper.prepareMainLooper();
...
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
在ActivityThread初始化时就通过Looper建立了消息循环机制,先看下初始化部分,相关代码如下:
/frameworks/base/core/java/android/os/Looper.java
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
// 确保主线程仅有一个Looper实例
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
private static void prepare(boolean quitAllowed) {
// 确保线程仅对应一个Looper
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
这里通过ThreadLocal确保线程安全,且保证任何线程只能对应一个Looper实例。Looper实例化时,就确定了它所在的线程,同时创建了一个MessageQueue,代码如下:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
MessageQueue稍后再研究,先看下Looper#loop的实现,代码如下:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
// 等待消息,如果没有消息,可能会阻塞
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
...
try {
// 分发消息
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
...
msg.recycleUnchecked();
}
}
这里建立了一个无限循环,不断地从MessageQueue中获取消息,然后进行分发,而我们使用的Handler并没有直接绑定在Looper中,而是绑定在msg.target变量里,这样做的好处是可以创建多个Handler。下面我们转到MessageQueue中,了解下MessageQueue#next方法,代码如下:
/frameworks/base/core/java/android/os/MessageQueue.java
Message next() {
...
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages; // 当前消息
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
// 找到下一个异步消息,忽略同步消息
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
// 没到msg分发时间
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
...
}
...
}
}
这里通过for循环不断的获取消息,然后等待消息分发时间到之后将消息分发出去,这样消息循环就建立好了。不过这里我们看到一段对异步消息的处理,为了更好的理解这段的作用,我们在文末再分析。接下来就应该通过Handler来发送消息和处理消息,Handler发送消息的方法有很多种,我们主要使用的有以下几种:
handler.sendMessage(msg)
handler.sendMessageDelayed(msg, delay)
handler.post(runnable)
handler.postDelayed(runnable, delay)
除了以上几个,还有几个类似的方法,甚至还有一个Handler#sendMessageAtFrontOfQueue方法,可以在消息队列的最前面插入消息,不过这些方法的原理都是一致的,我们着重分析Handler#sendMessage和Handler#post这两个方法。代码如下:
/frameworks/base/core/java/android/os/Handler.java
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
可以看到,它们最终都是调用了Handler#sendMessageDelayed方法,只是通过post方式最终将Runnable转成了Message对象,具体的做法如下:
private static Message getPostMessage(Runnable r) {
// 从一个全局的对象池里获取Message对象,可以重复使用,这样就节省了new对象的开支
Message m = Message.obtain();
m.callback = r;
return m;
}
也就是说这个Runnable实例就是作为Message的callback的。继续看Handler#sendMessageDelayed方法,代码如下:
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
...
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
最终,所有的方法都会调用到这个Handler#enqueueMessage方法,将Handler本身作为Message的target参数,然后将消息入队,最后在Looper中分发。接下来看下入队的操作,代码如下:
/frameworks/base/core/java/android/os/MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
// 唤醒标志
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// 新消息需要更早分发
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
// 阻塞后需要唤醒
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
// 异步消息也需要唤醒
needWake = mBlocked && p.target == null && msg.isAsynchronous();
// 根据时间顺序,将消息插入到合适的位置
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
// 唤醒
nativeWake(mPtr);
}
}
return true;
}
通过以上代码我们发现,消息在入队时,就已经按照时间顺序排列好了,最后到了分发阶段,分发是通过Handler#dispatchMessage完成的,代码如下:
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
原来,如果在发送Message时设置了callback,就会由我们设置的Runnable来处理,否则,就通过Handler初始化时指定的Callback处理,如果都没有设置,就通过Handler#handleMessage方法来处理。这个mCallback是在构造函数中实例化的,我们看几个构造方法就明白了:
public Handler() {
this(null, false);
}
public Handler(Callback callback) {
this(callback, false);
}
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
现在我们来解释下前面提到的异步消息。通过向MessageQueue中发送消息就可以让事件按照指定的时间和顺序来执行,但如果想要让消息有优先级区别呢?可以使用MessageQueue#postSyncBarrier方法,代码如下:
public int postSyncBarrier() {
return postSyncBarrier(SystemClock.uptimeMillis());
}
private int postSyncBarrier(long when) {
// Enqueue a new sync barrier token.
// We don't need to wake the queue because the purpose of a barrier is to stall it.
synchronized (this) {
final int token = mNextBarrierToken++;
final Message msg = Message.obtain();
msg.markInUse();
msg.when = when;
msg.arg1 = token;
Message prev = null;
Message p = mMessages;
if (when != 0) {
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
if (prev != null) { // invariant: p == prev.next
msg.next = p;
prev.next = msg;
} else {
msg.next = p;
mMessages = msg;
}
return token;
}
}
看起来这个方法也没有什么特别的地方,唯一的区别就是消息没有target,也就是没有Handler对象,MessageQueue在执行next方法时就会走到if (msg != null && msg.target == null)
中,此时它会忽略其间所有的同步消息,直到找到一个异步消息并开始执行,这个做法称之为同步屏障。调用此方法后可以得到一个token值,可以通过这个值取消屏障。然后我们就可以向MessageQueue发送一个异步消息,优先执行此事件了。MessageQueue#postSyncBarrier通常需要与MessageQueue#removeSyncBarrier成对使用,否则就再也接收不到同步消息了。目前,这个方法被标记为HIDE,在API层面无法调用。
在RootViewImpl#scheduleTraversals方法中,为了让Android系统能够更快的响应UI的刷新事件,就使用了此方法,代码如下:
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
具体的分析请看Android源码分析之Activity启动与View绘制流程(一)。
至此,我们对Handler机制就有了清晰的认识,它并不复杂,但是功能十分强大,掌握它的原理以后使用时会更加顺手。
Android源码分析之Touch事件分发机制