朴素贝叶斯对鸢尾花数据集进行分类

注:本人纯粹为了练手熟悉各个方法的用法

使用高斯朴素贝叶斯对鸢尾花数据进行分类

代码:

 1 # 通过朴素贝叶斯对鸢尾花数据进行分类
 2 
 3 from sklearn import datasets
 4 from sklearn.model_selection import train_test_split
 5 from sklearn.naive_bayes import MultinomialNB, GaussianNB
 6 import matplotlib.pyplot as plt
 7 import numpy as np
 8 import matplotlib as mpl
 9 from sklearn.preprocessing import StandardScaler
10 from sklearn.pipeline import Pipeline
11 
12 iris = datasets.load_iris() # 加载鸢尾花数据
13 iris_x = iris.data  # 获取数据
14 # print(iris_x)
15 iris_x = iris_x[:, :2]  # 取前两个特征值
16 # print(iris_x)
17 iris_y = iris.target    # 0, 1, 2
18 x_train, x_test, y_train, y_test = train_test_split(iris_x, iris_y, test_size=0.75, random_state=1) # 对数据进行分类 一部分最为训练一部分作为测试
19 # clf = GaussianNB()
20 # ir = clf.fit(x_train, y_train)
21 clf = Pipeline([
22         ('sc', StandardScaler()),
23         ('clf', GaussianNB())])     # 管道这个没深入理解 所以不知所以然
24 ir = clf.fit(x_train, y_train.ravel())  # 利用训练数据进行拟合
25 
26 # 画图:   
27 x1_max, x1_min = max(x_test[:, 0]), min(x_test[:, 0])   # 取0列特征得最大最小值
28 x2_max, x2_min = max(x_test[:, 1]), min(x_test[:, 1])   # 取1列特征得最大最小值
29 t1 = np.linspace(x1_min, x1_max, 500)   # 生成500个测试点
30 t2 = np.linspace(x2_min, x2_max, 500)   
31 x1, x2 = np.meshgrid(t1, t2)  # 生成网格采样点
32 x_test1 = np.stack((x1.flat, x2.flat), axis=1)
33 y_hat = ir.predict(x_test1) # 预测
34 mpl.rcParams['font.sans-serif'] = [u'simHei']   # 识别中文保证不乱吗
35 mpl.rcParams['axes.unicode_minus'] = False
36 cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF']) # 测试分类的颜色
37 cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])    # 样本点的颜色
38 plt.figure(facecolor='w')
39 plt.pcolormesh(x1, x2, y_hat.reshape(x1.shape), cmap=cm_light)  # y_hat  25000个样本点的画图,
40 plt.scatter(x_test[:, 0], x_test[:, 1], edgecolors='k', s=50, c=y_test, cmap=cm_dark)   # 测试数据的真实的样本点(散点) 参数自行百度
41 plt.xlabel(u'花萼长度', fontsize=14)
42 plt.ylabel(u'花萼宽度', fontsize=14)
43 plt.title(u'GaussianNB对鸢尾花数据的分类结果', fontsize=18)
44 plt.grid(True)
45 plt.xlim(x1_min, x1_max)
46 plt.ylim(x2_min, x2_max)
47 plt.show()
48 y_hat1 = ir.predict(x_test)
49 result = y_hat1 == y_test
50 print(result)
51 acc = np.mean(result)
52 print('准确度: %.2f%%' % (100 * acc))

图片显示:

朴素贝叶斯对鸢尾花数据集进行分类_第1张图片

正确率:

  朴素贝叶斯对鸢尾花数据集进行分类_第2张图片

 

你可能感兴趣的:(朴素贝叶斯对鸢尾花数据集进行分类)