- 常用综合评价模型(纯干货)
MX_9359
数学建模算法python
常用综合评价模型(纯干货)一、TOPSIS法1.1整体流程1.2代码实现#TOPSIS法bp=a.max(axis=0)#求正理想解bm=a.min(axis=0)#求负理想解d1=np.linalg.norm(a-bp,axis=1)#求到正理想解的距离d2=np.linalg.norm(a-bm,axis=1)#求到负理想解的距离f1=d2/(d1+d2);print('TOPSIS评价值:'
- 标量/向量/矩阵/张量/范数详解及其在机器学习中的应用
Psycho_MrZhang
数学矩阵机器学习线性代数
标量(Scalar)、向量(Vector)、矩阵(Matrix)、张量(Tensor)与范数(Norm)详解及其在机器学习中的应用1.标量(Scalar)定义:标量是单个数字,仅具有大小(Magnitude),没有方向。数学表示:如a=5a=5a=5,b=−3.2b=-3.2b=−3.2特点:零维数据(0DTensor)。机器学习中的应用:模型参数:如线性回归中的偏置项(Bias)。损失函数输出:
- MATLAB技巧——norm和vecnorm两个函数讲解与辨析
MATLAB卡尔曼
MATLAB技巧matlab开发语言
在MATLAB中,norm和vecnorm是两个用于计算向量或矩阵范数的函数,虽然它们的功能相似,但在使用场景和适用性上存在一些区别。本文将详细解释这两个函数的用途、功能以及如何选择合适的函数。文章目录norm函数用法范数类型vecnorm函数用法范数类型选择合适的函数示例对比结论norm函数用法norm函数用于计算向量或矩阵的范数。它的基本语法如下:n=norm(A)其中,A可以是一个向量或矩阵
- Mandelbrot集合成像的一段Mathematica代码解析
NEXUS209
分形几何MathematicaMandelbrot集合Mathematica分形Mandelbrot集合
在Mathematica中,我们可以有很多种方法绘制Mandelbrot集合,比如其中一种实现方案:Graphics@Raster@Rescale@Table[Length@NestWhileList[#^2+x+Iy&,0,Norm@#<2&,{1,2},40],{y,-1.3,1.3,0.01},{x,-2.6,1.3,0.01}]这么短的一段代码,就能绘制出Mandelbrot集合的图像。对
- 百度地图POI抓取——响应JSON格式
cellinlab
PythonPOI百度地图POIPython爬虫百度地图爬虫POI抓取
毕设需要,北京市餐饮POI{"content":[{"acc_flag":0,"addr":"北京石景山区鲁谷路74号瑞达大厦2楼","address_norm":"[北京市(110000)|CITY|1|][石景山区(110107)|AREA|1|][鲁谷路()|ROAD|1|74号$][瑞达大厦(17662036055328555007)|POI_PARENT|1|2楼$]","admin_i
- AI角色的“倾斜角度”的处理原理
你一身傲骨怎能输
Unity引擎技术导航网格
1.AI角色的“倾斜角度”指什么?这里的“倾斜角度”通常指AI角色的朝向地面的法线的姿态,即角色的身体是否会随着地形表面倾斜而倾斜。例如:在斜坡上,角色的脚底和身体是否会贴合斜坡表面,而不是始终保持竖直。2.导航网格是否提供倾斜角度数据?导航网格本身的数据**导航网格(NavMesh)**的每个多边形(通常是三角形)都明确记录了其三个顶点的三维坐标。由这三个顶点,可以计算出该多边形的法线(Norm
- 四元数转旋转矩阵
AI算法网奇
python基础pytorch人工智能python
目录gsplat四元数转旋转矩阵等同代码实现scipy四元数转旋转矩阵替换代码gsplat四元数转旋转矩阵等同代码实现importtorchimporttorch.nn.functionalasFdefquat_act(x:torch.Tensor)->torch.Tensor:returnx/x.norm(dim=-1,keepdim=True)defnormalized_quat_to_rot
- SAP系统客户可回收包材库存管理
-样样-
sap#ERPsap
问题:客户可回收包材库存管理现象:回收瓶无库存管理,在库数量以及在客户的库存数量没有统计,管理混乱。解决方法:客户可回收包装材料在SAP有标准的解决方案,在集团尚未启用该业务,首先物料主数据里的项目类别组要设置成LEIH(标准的是NORM、第三方是BANS),在销售订单或者发货单的时候添加到行项目,发货过账之后,移动类型为621特殊库存类型为V(客户处可退回包装)。
- 大模型时代的归一化技术:解密Transformer架构中Pre-Norm与RMSNorm的黄金组合
流云雲
transformer深度学习人工智能自然语言处理python
大模型时代的归一化技术:解密Transformer架构中Pre-Norm与RMSNorm的黄金组合引言自2017年"AttentionIsAllYouNeed"论文横空出世,Transformer架构便以其卓越的性能重塑了自然语言处理乃至更广泛的AI领域。在这革命性的架构中,归一化(Normalization)技术扮演着至关重要的角色,它像精密的调谐器,确保模型在深层结构中稳定训练并高效学习。然而
- Pytorch添加自定义算子之(2)-配置torch算子
誓天断发
深度学习之自定义算子实现pytorch人工智能python
一、安装配置pytorch环境https://pytorch.org/get-started/locally/二、安装eigen3库见上一篇文章三、编写CPP代码算子将此cpp命名为:custom_group_norm.cpp,后续python中会使用到。#include#include"eigen3/Eigen/Dense"usingConstEigenVectorArrayMap=<
- 深度学习基础—Batch Norm
sniper_fandc
深度学习理论深度学习batch人工智能
对于一个神经网络我们知道,归一化输入特征是加速网络训练的技巧之一,因为归一化后,损失函数的图像就会由狭长变得更圆,那么这是否启发我们,在深度更深模型中,对各层的输出进行归一化,有益于下一层的学习?毕竟上一层的输出是下一层的输入。这就是BatchNorm的核心作用。由于每一层的参数更新后,对于同一输入,输出的分布就会发生改变(这称之为Covariateshift:内部协变量偏移),这带来的影响是下一
- [论文笔记] Deepseek技术报告解读: MLA&MTP
心心喵
论文笔记论文阅读
1.RMSNorm归一化层classRMSNorm(nn.Module):def__init__(self,dim:int,eps:float=1e-8):super().__init__()self.eps=epsself.weight=nn.Parameter(torch.ones(dim))#可学习的缩放参数def_norm(self,x:torch.Tensor):returnx*torc
- L2范数(L2 Norm)
Xiaok1018
深度学习人工智能
1.什么是L2范数?直观理解想象你有一个向量(比如嵌入向量[1.2,-0.5,3.1]),L2范数就是计算这个向量的“几何长度”。就像在三维空间中,计算点(1.2,-0.5,3.1)到原点(0,0,0)的距离。数学公式对于一个向量x=[x₁,x₂,...,xn],它的L2范数是:∥x∥2=x12+x22+⋯+xn2\|x\|_2=\sqrt{x_1^2+x_2^2+\cdots+x_n^2}∥x∥
- PyTorch nn.Embedding介绍
qq_27390023
pytorchembedding人工智能
nn.Embedding是PyTorch中用于将离散的整数索引(代表类别或符号)转换为连续向量表示的层。这个嵌入层特别适合用于自然语言处理、序列数据、推荐系统、以及生物信息学中的离散符号编码(如氨基酸序列等)等任务。一、nn.Embedding的定义和参数nn.Embedding(num_embeddings,embedding_dim,padding_idx=None,max_norm=None
- 深度学习篇---网络结构
Ronin-Lotus
图像处理篇深度学习篇程序代码篇深度学习人工智能pythonpytorch残差块卷积池化
文章目录前言一、残差块(ResidualBlock)类二、卷积神经网络(CNNModule)类三、具体计算过程3.1第一个卷积模块3.1.1卷积层self.conv13.1.2批量归一化层self.norm13.1.3激活函数层self.relu13.1.4最大池化层self.pool13.2第一个残差块和池化层3.2.1残差块self.res_block13.2.2平均池化层self.pool2
- vllm安装踩坑
蒸土豆的技术细节
人工智能
今天是2024/7/18.vllm0.5.2最近一周出了个不好搞的新issue,会遇到torch.ops._C没有rms_norm,或者没有reshape_and_cache_flash这两个属性的问题。完整报错如下:AttributeError:‘_OpNamespace’‘_C_cache_ops’objecthasnoattribute‘reshape_and_cache_flash’Att
- 数据可视化:python画散点图scatter
西红柿爱吃小番茄
pythonpython数据可视化matplotlib
数据可视化:python画散点图scatter我想遍历一幅图的所有像素的h分量的值,然后用散点图表示出来。观察这幅图的h分量的值得变化范围。scatter函数的原型matplotlib.pyplot.scatter(x,y,s=20,c='b',marker='o',cmap=None,norm=None,vmin=None,vmax=None,linewidths=None,vert=None,
- 警告 torch.nn.utils.weight_norm is deprecate 的参考解决方法
wongHome
深度学习相关调试问题Ubuntupytorch
文章目录写在前面一、问题描述二、解决方法参考链接写在前面自己的测试环境:Ubuntu20.04一、问题描述运行pytorch程序,如下如下警告/home/wong/ProgramFiles/anaconda3/envs/pytorch_env/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:30:UserWarning:torch
- llama源码学习·model.py[1]RMSNorm归一化
小杜不吃糖
llamapython
一、model.py中的RMSNorm源码classRMSNorm(torch.nn.Module):def__init__(self,dim:int,eps:float=1e-6):super().__init__()self.eps=epsself.weight=nn.Parameter(torch.ones(dim))def_norm(self,x):returnx*torch.rsqrt(
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 基于多种模型剪枝方法(L1-norm、Slimming、AutoSlim)的模型轻量化和模型压缩实现
踟蹰横渡口,彳亍上滩舟。
pytorch量化感知训练稀疏训练模型剪枝学习教程剪枝python深度学习
基于多种模型剪枝方法(L1-norm、Slimming、AutoSlim)的模型轻量化实现支持:VGG、MobileNet、Resnet、ShuffleNet等模型。代码下载地址:下载BackBonePrunerPruneRatioOriginal/Pruned/FinetunedAccuracyFLOPs(M)Params(M)MobileV2L1-Norm0.60.937/0.100/0.84
- 自动文摘的METEOR评价指标
Shirveon
自动文摘
参考METEOR下载详细文档$java-Xmx2G-jarmeteor-*.jarexample/xray/system1.hypexample/xray/reference-norm-writeAlignments-fsystem1####exactmatch####java-Xmx2G-jarmeteor-*.jardecodedreference-norm-writeAlignments-f
- 2021年7月初,深圳TPlink图像算法工程师面试题分享
niuyunpang
算法链表机器学习深度学习人工智能
问题一:Batch-norm作用和参数batchnorm的作用batchnorm对于输入数据做了零均值化和方差归一化过程,方便了下一层网络的训练过程,从而加速了网络的学习。不同batch的数据,由于加入了batchnorm,中间层的表现会更加稳定,输出值不会偏移太多。各层之间受之前层的影响降低,各层之间比较独立,有助于加速网络的学习。梯度爆炸和梯度消失现象也得到了一些缓解(我自己加上去的)。bat
- 相似度计算
Panesle
python人工智能算法
1.余弦相似度计算(不区分向量方向,互换顺序也相同)sen_vec1=sbert.get_sentence_emb(context15)#向量化sen_vec1=sen_vec1*(1.0/(np.linalg.norm(sen_vec1)+0.00001))#normal化sen_vec2=sbert.get_sentence_emb(context14)#向量化sen_vec2=sen_vec
- 一个色条可用于多个散点图
潮易
chrome
一个色条可用于多个散点图在Python中,使用matplotlib库绘制多个散点图时,可以使用循环来重复生成相同的图表,然后修改数据以显示不同分布的数据。以下是一个详细步骤的代码示例:```pythonimportmatplotlib.pyplotaspltimportnumpyasnp#创建一个色条对象cax=ax2.inset_axes([0,0,1,0.5])norm=matplotlib.
- python学生分布_python统计函数库scipy.stats的用法解析
weixin_39967096
python学生分布
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法。1.生成服从指定分布的随机数norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0,s
- python统计函数库_python统计函数库scipy.stats的用法1/3
颜卿Lydia
python统计函数库
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法。生成服从指定分布的随机数norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0,sca
- python的统计分析库scipy.stats使用方法
czliutz
pythonscipy开发语言
在Python中,stats库主要是scipy.stats模块,它提供了大量的概率分布和统计函数。以下是其使用方法:一、导入模块pythonfromscipyimportstats二、常见概率分布函数的使用正态分布:创建正态分布对象:norm=stats.norm。计算概率密度函数(PDF):pdf_value=norm.pdf(x),其中x是给定的值。例如,计算正态分布在x=1处的概率密度,可以
- Pandas逐行读取DataFrame数据以及修改对应数据
Zswdhy
pythonpython
逐行读取数据,并修改对应数据#remove_data,为一个DataFrame对象forindexsinremove_data.index:#逐行查看,values可以用int型索引remove_data.loc[indexs].values[0:-1]#逐行修改列值remove_data.loc[indexs,"Norm_peptide"]=norm_protein#也可以用loc方法查看指定元
- python 绘制正态分布图
点云侠
CloudComparepython开发语言算法3d
目录一、概述二、代码实现三、结果展示一、概述 在Python中,可以使用numpy库中的normal()函数或random.normal()方法生成正态分布的随机数,同时也利用scipy库的norm.pdf()函数来计算正态分布的概率密度函数。二、代码实现importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportnorm#创建
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S