描述
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
输入
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
输出
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
样例输入
5
9
1
0
5
4
3
1
2
3
0
样例输出
6
0
题目来源
求最小的交换次数,即求逆序对数问题,并归排序。
【并归排序】
如下演示并归排序的整个过程:
并归排序主要是深搜实现的。
{9,1,0,4,5,8,7,4,3}=>{9,1,0,4,5} {8,7,4,3}
{9,1,0,4,5}=>{9,1,0} {4,5}=>{9}{1}{0} {4}{5}
{8,7,4,3}=>{8,7} {4,3}=>{8}{7} {4}{3}
合并子表
{0,1,9} {4,5} {7,8} {3,4}
{0,1,4,5,9} {3,4,7,8}
{0,1,3,4,4,7,8,9}
#include <stdio.h> __int64 sum; void mergeSort(int* a,int low,int mid,int high){ int* p=new int[high+1]; int i=low; int j=low;//左侧表的起始位置 int h=mid+1;//右侧表的起始位置 while(h<=high&&j<=mid){ if(a[j]<=a[h]){ p[i]=a[j]; j++; i++; }else{ //求逆序数 sum+=h-i; p[i]=a[h]; h++; i++; } } for(;j<=mid;j++,i++){ p[i]=a[j]; } for(;h<=high;h++,i++){ p[i]=a[h]; } for(i=low;i<=high;i++){ a[i]=p[i]; } delete[] p; } void merge(int* a,int low,int high){ if(low<high){ int mid=(low+high)>>1; //划分子表 merge(a,low,mid); merge(a,mid+1,high); //合并子表 mergeSort(a,low,mid,high); } } int main() { int n; int arr[500010]; while(scanf("%d",&n)!=EOF && n){ for(int i=0; i<n; i++){ scanf("%d",&arr[i]); } sum=0; merge(arr,0,n-1); printf("%I64d\n",sum); } return 0; }