1.快速排序
1.1快速排序法介绍
快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
1.2快速排序法示意图
1.3快速排序思路分析
要求: 对 [-9,78,0,23,-567,70] 进行从小到大的�排序,要求使用快速排序法。【测试8w和800w】
1.4代码实现
package cn.smallmartial.sort;
import java.util.Arrays;
/**
* @Author smallmartial
* @Date 2019/6/8
* @Email [email protected]
*/
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class QuickSort {
public static void main(String[] args) {
// int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};
//测试快排的执行速度
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
quickSort(arr, 0, arr.length-1);
// System.out.println(Arrays.toString(arr));
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("arr=" + Arrays.toString(arr));
}
public static void quickSort(int[] arr,int left, int right) {
int l = left; //左下标
int r = right; //右下标
//pivot 中轴值
int pivot = arr[(left + right) / 2];
int temp = 0; //临时变量,作为交换时使用
//while循环的目的是让比pivot 值小放到左边
//比pivot 值大放到右边
while( l < r) {
//在pivot的左边一直找,找到大于等于pivot值,才退出
while( arr[l] < pivot) {
l += 1;
}
//在pivot的右边一直找,找到小于等于pivot值,才退出
while(arr[r] > pivot) {
r -= 1;
}
//如果l >= r说明pivot 的左右两的值,已经按照左边全部是
//小于等于pivot值,右边全部是大于等于pivot值
if( l >= r) {
break;
}
//交换
temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
if(arr[l] == pivot) {
r -= 1;
}
//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
if(arr[r] == pivot) {
l += 1;
}
}
// 如果 l == r, 必须l++, r--, 否则为出现栈溢出
if (l == r) {
l += 1;
r -= 1;
}
//向左递归
if(left < r) {
quickSort(arr, left, r);
}
//向右递归
if(right > l) {
quickSort(arr, l, right);
}
}
}
1.5运行结果:
2.归并排序
2.1归并排序介绍:
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
2.2归并排序思想示意图1-基本思想
说明:
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程。
2.3归并排序思想示意图2-合并相邻有序子序列:
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤
2.4代码实现:
package cn.smallmartial.sort;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class MergetSort {
public static void main(String[] args) {
int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; //
//测试快排的执行速度
// 创建要给80000个的随机的数组
//int[] arr = new int[8000000];
// for (int i = 0; i < 8000000; i++) {
// arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
// }
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
int temp[] = new int[arr.length]; //归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
System.out.println("归并排序后=" + Arrays.toString(arr));
}
//分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if(left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
//合并
merge(arr, left, mid, right, temp);
}
}
//合并的方法
/**
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; //初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
//(一)
//先把左右两边(有序)的数据按照规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {//继续
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,填充到 temp数组
//然后 t++, i++
if(arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { //反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
//(二)
//把有剩余数据的一边的数据依次全部填充到temp
while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
//(三)
//将temp数组的元素拷贝到arr
//注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
//第一次合并 tempLeft = 0 , right = 1 // tempLeft = 2 right = 3 // tL=0 ri=3
//最后一次 tempLeft = 0 right = 7
while(tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}