二阶段提交

算法思路

参与者将操作成败通知协调者,再由协调者根据所有参与者的反馈情报决定各参与者是否要提交操作还是中止操作。

算法的成立基于以下假设

  1. 该分布式系统中,存在一个节点作为协调者(Coordinator),其他节点作为参与者(Cohorts)。且节点之间可以进行网络通信。

  2. 所有节点都采用预写式日志,且日志被写入后即被保持在可靠的存储设备上,即使节点损坏不会导致日志数据的消失。

  3. 所有节点不会永久性损坏,即使损坏后仍然可以恢复。

具体算法

二阶阶段具体指

第一阶段:准备阶段(投票阶段)
第二阶段:提交阶段(执行阶段)

准备阶段

事务协调者给每个参与者发送Prepare消息,每个参与者要么直接返回失败,要么在本地执行事务,但不提交。这个阶段一定得写本地的redo和undo日志。

可以进一步将准备阶段分为以下三个步骤

  1. 协调者节点向所有参与者节点询问是否可以执行提交操作,并开始等待各参与者节点的响应。

  2. 参与者节点执行询问发起为止的所有事务操作,并将Undo信息和Redo信息写入日志。(注意:若成功这里其实每个参与者已经执行了事务操作)

  3. 各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,则它返回一个”同意”消息;如果参与者节点的事务操作实际执行失败,则它返回一个”中止”消息。

提交阶段

如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源)

协调者节点从所有参与者节点获得的相应消息都为"同意"时

  1. 协调者节点向所有参与者节点发出"正式提交(commit)"的请求。

  2. 参与者节点正式完成操作,并释放在整个事务期间内占用的资源。

  3. 参与者节点向协调者节点发送"完成"消息。

  4. 协调者节点受到所有参与者节点反馈的"完成"消息后,完成事务。

任一参与者节点在第一阶段返回的响应消息为"中止" || 协调者节点在第一阶段的询问超时之前无法获取所有参与者节点的响应消息时

  1. 协调者节点向所有参与者节点发出"回滚操作(rollback)"的请求。

  2. 参与者节点利用之前写入的Undo信息执行回滚,并释放在整个事务期间内占用的资源。

  3. 参与者节点向协调者节点发送"回滚完成"消息。

  4. 协调者节点受到所有参与者节点反馈的"回滚完成"消息后,取消事务。

缺点

  1. 同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。

  2. 单点故障。由于协调者的重要性,一旦协调者发生故障。参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)

  3. 数据不一致。在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了commit请求。而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。

  4. 二阶段无法解决的问题:协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。

你可能感兴趣的:(二阶段提交)