聊聊kafka的partition分配

本文主要研究一下kafka的partition分配,主要是key到parition的映射,partition对consumer的分配,以及partition的replica对broker/machine的分配。

1.key到partition的映射

在kafka0.8版本的时候,是这样的
kafka-clients-0.8.2.2-sources.jar!/org/apache/kafka/clients/producer/internals/Partitioner.java

/**
 * The default partitioning strategy:
 * 
    *
  • If a partition is specified in the record, use it *
  • If no partition is specified but a key is present choose a partition based on a hash of the key *
  • If no partition or key is present choose a partition in a round-robin fashion */ public class Partitioner { private final AtomicInteger counter = new AtomicInteger(new Random().nextInt()); /** * Compute the partition for the given record. * * @param record The record being sent * @param cluster The current cluster metadata */ public int partition(ProducerRecord record, Cluster cluster) { List partitions = cluster.partitionsForTopic(record.topic()); int numPartitions = partitions.size(); if (record.partition() != null) { // they have given us a partition, use it if (record.partition() < 0 || record.partition() >= numPartitions) throw new IllegalArgumentException("Invalid partition given with record: " + record.partition() + " is not in the range [0..." + numPartitions + "]."); return record.partition(); } else if (record.key() == null) { int nextValue = counter.getAndIncrement(); List availablePartitions = cluster.availablePartitionsForTopic(record.topic()); if (availablePartitions.size() > 0) { int part = Utils.abs(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.abs(nextValue) % numPartitions; } } else { // hash the key to choose a partition return Utils.abs(Utils.murmur2(record.key())) % numPartitions; } } }
  • kafka0.9+版本
    0.9+版本支持了自定义parition,可以通过partitioner.class这个属性来设置。原来的Partitioner变成一个接口:kafka-clients-0.9.0.1-sources.jar!/org/apache/kafka/clients/producer/Partitioner.java
public interface Partitioner extends Configurable {

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes The serialized key to partition on( or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes The serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster);

    /**
     * This is called when partitioner is closed.
     */
    public void close();

}

然后之前的实现改为默认的实现
kafka-clients-0.9.0.1-sources.jar!/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java

/**
 * The default partitioning strategy:
 * 
    *
  • If a partition is specified in the record, use it *
  • If no partition is specified but a key is present choose a partition based on a hash of the key *
  • If no partition or key is present choose a partition in a round-robin fashion */ public class DefaultPartitioner implements Partitioner { private final AtomicInteger counter = new AtomicInteger(new Random().nextInt()); /** * A cheap way to deterministically convert a number to a positive value. When the input is * positive, the original value is returned. When the input number is negative, the returned * positive value is the original value bit AND against 0x7fffffff which is not its absolutely * value. * * Note: changing this method in the future will possibly cause partition selection not to be * compatible with the existing messages already placed on a partition. * * @param number a given number * @return a positive number. */ private static int toPositive(int number) { return number & 0x7fffffff; } public void configure(Map configs) {} /** * Compute the partition for the given record. * * @param topic The topic name * @param key The key to partition on (or null if no key) * @param keyBytes serialized key to partition on (or null if no key) * @param value The value to partition on or null * @param valueBytes serialized value to partition on or null * @param cluster The current cluster metadata */ public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { List partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = DefaultPartitioner.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return DefaultPartitioner.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return DefaultPartitioner.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } } public void close() {} }

2.partition与consumer之间的分配

同一个group之间的consumer如果分配parition,主要看这个
kafka-clients-0.10.2.1-sources.jar!/org/apache/kafka/clients/consumer/internals/PartitionAssignor.java

/**
 * This interface is used to define custom partition assignment for use in
 * {@link org.apache.kafka.clients.consumer.KafkaConsumer}. Members of the consumer group subscribe
 * to the topics they are interested in and forward their subscriptions to a Kafka broker serving
 * as the group coordinator. The coordinator selects one member to perform the group assignment and
 * propagates the subscriptions of all members to it. Then {@link #assign(Cluster, Map)} is called
 * to perform the assignment and the results are forwarded back to each respective members
 *
 * In some cases, it is useful to forward additional metadata to the assignor in order to make
 * assignment decisions. For this, you can override {@link #subscription(Set)} and provide custom
 * userData in the returned Subscription. For example, to have a rack-aware assignor, an implementation
 * can use this user data to forward the rackId belonging to each member.
 */
public interface PartitionAssignor {

    /**
     * Return a serializable object representing the local member's subscription. This can include
     * additional information as well (e.g. local host/rack information) which can be leveraged in
     * {@link #assign(Cluster, Map)}.
     * @param topics Topics subscribed to through {@link org.apache.kafka.clients.consumer.KafkaConsumer#subscribe(java.util.Collection)}
     *               and variants
     * @return Non-null subscription with optional user data
     */
    Subscription subscription(Set topics);

    /**
     * Perform the group assignment given the member subscriptions and current cluster metadata.
     * @param metadata Current topic/broker metadata known by consumer
     * @param subscriptions Subscriptions from all members provided through {@link #subscription(Set)}
     * @return A map from the members to their respective assignment. This should have one entry
     *         for all members who in the input subscription map.
     */
    Map assign(Cluster metadata, Map subscriptions);


    /**
     * Callback which is invoked when a group member receives its assignment from the leader.
     * @param assignment The local member's assignment as provided by the leader in {@link #assign(Cluster, Map)}
     */
    void onAssignment(Assignment assignment);
}

内置了两个实现

  • RangeAssignor
    kafka-clients-0.10.2.1-sources.jar!/org/apache/kafka/clients/consumer/RangeAssignor.java
/**
 * The range assignor works on a per-topic basis. For each topic, we lay out the available partitions in numeric order
 * and the consumers in lexicographic order. We then divide the number of partitions by the total number of
 * consumers to determine the number of partitions to assign to each consumer. If it does not evenly
 * divide, then the first few consumers will have one extra partition.
 *
 * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions,
 * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2.
 *
 * The assignment will be:
 * C0: [t0p0, t0p1, t1p0, t1p1]
 * C1: [t0p2, t1p2]
 */
public class RangeAssignor extends AbstractPartitionAssignor {

    @Override
    public String name() {
        return "range";
    }

    private Map> consumersPerTopic(Map> consumerMetadata) {
        Map> res = new HashMap<>();
        for (Map.Entry> subscriptionEntry : consumerMetadata.entrySet()) {
            String consumerId = subscriptionEntry.getKey();
            for (String topic : subscriptionEntry.getValue())
                put(res, topic, consumerId);
        }
        return res;
    }

    @Override
    public Map> assign(Map partitionsPerTopic,
                                                    Map> subscriptions) {
        Map> consumersPerTopic = consumersPerTopic(subscriptions);
        Map> assignment = new HashMap<>();
        for (String memberId : subscriptions.keySet())
            assignment.put(memberId, new ArrayList());

        for (Map.Entry> topicEntry : consumersPerTopic.entrySet()) {
            String topic = topicEntry.getKey();
            List consumersForTopic = topicEntry.getValue();

            Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
            if (numPartitionsForTopic == null)
                continue;

            Collections.sort(consumersForTopic);

            int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size();
            int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size();

            List partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic);
            for (int i = 0, n = consumersForTopic.size(); i < n; i++) {
                int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition);
                int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1);
                assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length));
            }
        }
        return assignment;
    }

}
  • RoundRobinAssignor
    kafka-clients-0.10.2.1-sources.jar!/org/apache/kafka/clients/consumer/RoundRobinAssignor.java
/**
 * The round robin assignor lays out all the available partitions and all the available consumers. It
 * then proceeds to do a round robin assignment from partition to consumer. If the subscriptions of all consumer
 * instances are identical, then the partitions will be uniformly distributed. (i.e., the partition ownership counts
 * will be within a delta of exactly one across all consumers.)
 *
 * For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions,
 * resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2.
 *
 * The assignment will be:
 * C0: [t0p0, t0p2, t1p1]
 * C1: [t0p1, t1p0, t1p2]
 *
 * When subscriptions differ across consumer instances, the assignment process still considers each
 * consumer instance in round robin fashion but skips over an instance if it is not subscribed to
 * the topic. Unlike the case when subscriptions are identical, this can result in imbalanced
 * assignments. For example, we have three consumers C0, C1, C2, and three topics t0, t1, t2,
 * with 1, 2, and 3 partitions, respectively. Therefore, the partitions are t0p0, t1p0, t1p1, t2p0,
 * t2p1, t2p2. C0 is subscribed to t0; C1 is subscribed to t0, t1; and C2 is subscribed to t0, t1, t2.
 *
 * Tha assignment will be:
 * C0: [t0p0]
 * C1: [t1p0]
 * C2: [t1p1, t2p0, t2p1, t2p2]
 */
public class RoundRobinAssignor extends AbstractPartitionAssignor {

    @Override
    public Map> assign(Map partitionsPerTopic,
                                                    Map> subscriptions) {
        Map> assignment = new HashMap<>();
        for (String memberId : subscriptions.keySet())
            assignment.put(memberId, new ArrayList());

        CircularIterator assigner = new CircularIterator<>(Utils.sorted(subscriptions.keySet()));
        for (TopicPartition partition : allPartitionsSorted(partitionsPerTopic, subscriptions)) {
            final String topic = partition.topic();
            while (!subscriptions.get(assigner.peek()).contains(topic))
                assigner.next();
            assignment.get(assigner.next()).add(partition);
        }
        return assignment;
    }


    public List allPartitionsSorted(Map partitionsPerTopic,
                                                    Map> subscriptions) {
        SortedSet topics = new TreeSet<>();
        for (List subscription : subscriptions.values())
            topics.addAll(subscription);

        List allPartitions = new ArrayList<>();
        for (String topic : topics) {
            Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
            if (numPartitionsForTopic != null)
                allPartitions.addAll(AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic));
        }
        return allPartitions;
    }

    @Override
    public String name() {
        return "roundrobin";
    }

}

当topic的parition或者同一个group的consumer变动时,则会触发parition与consumer的rebalance,来保证均衡负载,具体可以详见Kafka消费组(consumer group)

3.partition与machine的映射

kafka在创建topic的时候,需要指定paritition以及replication的数量。这个数目是提前固定好的。那么具体partiton是到哪些mathine呢?
具体见这个类
kafka-0.10.2.1-src/core/src/main/scala/kafka/admin/AdminUtils.scala

/**
   * There are 3 goals of replica assignment:
   *
   * 1. Spread the replicas evenly among brokers.
   * 2. For partitions assigned to a particular broker, their other replicas are spread over the other brokers.
   * 3. If all brokers have rack information, assign the replicas for each partition to different racks if possible
   *
   * To achieve this goal for replica assignment without considering racks, we:
   * 1. Assign the first replica of each partition by round-robin, starting from a random position in the broker list.
   * 2. Assign the remaining replicas of each partition with an increasing shift.
   *
   * Here is an example of assigning
   * broker-0  broker-1  broker-2  broker-3  broker-4
   * p0        p1        p2        p3        p4       (1st replica)
   * p5        p6        p7        p8        p9       (1st replica)
   * p4        p0        p1        p2        p3       (2nd replica)
   * p8        p9        p5        p6        p7       (2nd replica)
   * p3        p4        p0        p1        p2       (3nd replica)
   * p7        p8        p9        p5        p6       (3nd replica)
   *
   * To create rack aware assignment, this API will first create a rack alternated broker list. For example,
   * from this brokerID -> rack mapping:
   *
   * 0 -> "rack1", 1 -> "rack3", 2 -> "rack3", 3 -> "rack2", 4 -> "rack2", 5 -> "rack1"
   *
   * The rack alternated list will be:
   *
   * 0, 3, 1, 5, 4, 2
   *
   * Then an easy round-robin assignment can be applied. Assume 6 partitions with replication factor of 3, the assignment
   * will be:
   *
   * 0 -> 0,3,1
   * 1 -> 3,1,5
   * 2 -> 1,5,4
   * 3 -> 5,4,2
   * 4 -> 4,2,0
   * 5 -> 2,0,3
   *
   * Once it has completed the first round-robin, if there are more partitions to assign, the algorithm will start
   * shifting the followers. This is to ensure we will not always get the same set of sequences.
   * In this case, if there is another partition to assign (partition #6), the assignment will be:
   *
   * 6 -> 0,4,2 (instead of repeating 0,3,1 as partition 0)
   *
   * The rack aware assignment always chooses the 1st replica of the partition using round robin on the rack alternated
   * broker list. For rest of the replicas, it will be biased towards brokers on racks that do not have
   * any replica assignment, until every rack has a replica. Then the assignment will go back to round-robin on
   * the broker list.
   *
   * As the result, if the number of replicas is equal to or greater than the number of racks, it will ensure that
   * each rack will get at least one replica. Otherwise, each rack will get at most one replica. In a perfect
   * situation where the number of replicas is the same as the number of racks and each rack has the same number of
   * brokers, it guarantees that the replica distribution is even across brokers and racks.
   *
   * @return a Map from partition id to replica ids
   * @throws AdminOperationException If rack information is supplied but it is incomplete, or if it is not possible to
   *                                 assign each replica to a unique rack.
   *
   */
  def assignReplicasToBrokers(brokerMetadatas: Seq[BrokerMetadata],
                              nPartitions: Int,
                              replicationFactor: Int,
                              fixedStartIndex: Int = -1,
                              startPartitionId: Int = -1): Map[Int, Seq[Int]] = {
    if (nPartitions <= 0)
      throw new InvalidPartitionsException("number of partitions must be larger than 0")
    if (replicationFactor <= 0)
      throw new InvalidReplicationFactorException("replication factor must be larger than 0")
    if (replicationFactor > brokerMetadatas.size)
      throw new InvalidReplicationFactorException(s"replication factor: $replicationFactor larger than available brokers: ${brokerMetadatas.size}")
    if (brokerMetadatas.forall(_.rack.isEmpty))
      assignReplicasToBrokersRackUnaware(nPartitions, replicationFactor, brokerMetadatas.map(_.id), fixedStartIndex,
        startPartitionId)
    else {
      if (brokerMetadatas.exists(_.rack.isEmpty))
        throw new AdminOperationException("Not all brokers have rack information for replica rack aware assignment")
      assignReplicasToBrokersRackAware(nPartitions, replicationFactor, brokerMetadatas, fixedStartIndex,
        startPartitionId)
    }
  }

这里方法的注释已经写的很清楚了,不过我这里再复述一下。

目标

replica assignment有三个目标:

  • 在brokers之间均分replicas
  • partition与它的其他replicas不再同一个broker上
  • 如果broker有rack信息,则partition的replicas尽量分配在不同rack上面

策略

kafka0.10版本支持了2种replica assignment策略(对于partition来说,它也是由n个replica组成的),一种是rack unware,一种是rack-ware,这里的rack就是机架的意思。

  • rack unware(假设有5个broker,10个partition,每个partition有3个replica)
    这种策略主要如下:
    • 随机从broker list选一个开始,然后对每个partition的第一个replica进行round-robin分配
    • 之后对每个partition的其余replicas进行递增1位错位开来
      比如
   * broker-0  broker-1  broker-2  broker-3  broker-4
   * p0        p1        p2        p3        p4       (1st replica)
   * p5        p6        p7        p8        p9       (1st replica)
   * p4        p0        p1        p2        p3       (2nd replica)
   * p8        p9        p5        p6        p7       (2nd replica)
   * p3        p4        p0        p1        p2       (3nd replica)
   * p7        p8        p9        p5        p6       (3nd replica)

这里假设从broker-0开始,然后又10个partition,每个partition有3个replica
则可以看到p0在broker-0,p1在broker-1,依次round下来。
到了第二个replica的时候,可以看到p0在broker-1,p1在broker-2,这样递增1位错开来。

代码

private def assignReplicasToBrokersRackUnaware(nPartitions: Int,
                                                 replicationFactor: Int,
                                                 brokerList: Seq[Int],
                                                 fixedStartIndex: Int,
                                                 startPartitionId: Int): Map[Int, Seq[Int]] = {
    val ret = mutable.Map[Int, Seq[Int]]()
    val brokerArray = brokerList.toArray
    val startIndex = if (fixedStartIndex >= 0) fixedStartIndex else rand.nextInt(brokerArray.length)
    var currentPartitionId = math.max(0, startPartitionId)
    var nextReplicaShift = if (fixedStartIndex >= 0) fixedStartIndex else rand.nextInt(brokerArray.length)
    for (_ <- 0 until nPartitions) {
      if (currentPartitionId > 0 && (currentPartitionId % brokerArray.length == 0))
        nextReplicaShift += 1
      val firstReplicaIndex = (currentPartitionId + startIndex) % brokerArray.length
      val replicaBuffer = mutable.ArrayBuffer(brokerArray(firstReplicaIndex))
      for (j <- 0 until replicationFactor - 1)
        replicaBuffer += brokerArray(replicaIndex(firstReplicaIndex, nextReplicaShift, j, brokerArray.length))
      ret.put(currentPartitionId, replicaBuffer)
      currentPartitionId += 1
    }
    ret
  }
  • rack ware(这里假设有6个broker,3个rack,6个partition,每个partition有3个replica)
    首先对broker list跟rack进行一次映射,比如
0 -> "rack1", 1 -> "rack3", 2 -> "rack3", 3 -> "rack2", 4 -> "rack2", 5 -> "rack1"

然后按rack顺序round起来得到一个新的broker-list,

0(rack1),3(rack2),1(rack3),5(rack1),4(rack2),2(rack3)

然后使用round-robbin对parition跟broker进行映射

   * 0 -> 0,3,1
   * 1 -> 3,1,5
   * 2 -> 1,5,4
   * 3 -> 5,4,2
   * 4 -> 4,2,0
   * 5 -> 2,0,3

partition0的三个replica分别在broker-0,broker-3,broker-1上面
partition1的三个replica分别在broker-3,broker-1,broker-5上面

假设这里parition个数大于broker个数的话,那么对于多的parition,其第二个replica将移位开来,比如

6 -> 0,4,2 (instead of repeating 0,3,1 as partition 0)

对于每个parition的第一个replica是按rack映射后的list来round-robbin分配,之后的其他replica则是偏向选择还没有replica的broker,直到每个rack都有replica之后继续使用round-robin。

当replicas大于或等于racks数量时,则每个rack至少有个一replica;否则的话,每个rack至多一个replica。在理想的情况下,replicas与racks相等,每个rack有着相同数目的broker,这样保证了broker和rack之间的replica均衡分布。

代码

private def assignReplicasToBrokersRackAware(nPartitions: Int,
                                               replicationFactor: Int,
                                               brokerMetadatas: Seq[BrokerMetadata],
                                               fixedStartIndex: Int,
                                               startPartitionId: Int): Map[Int, Seq[Int]] = {
    val brokerRackMap = brokerMetadatas.collect { case BrokerMetadata(id, Some(rack)) =>
      id -> rack
    }.toMap
    val numRacks = brokerRackMap.values.toSet.size
    val arrangedBrokerList = getRackAlternatedBrokerList(brokerRackMap)
    val numBrokers = arrangedBrokerList.size
    val ret = mutable.Map[Int, Seq[Int]]()
    val startIndex = if (fixedStartIndex >= 0) fixedStartIndex else rand.nextInt(arrangedBrokerList.size)
    var currentPartitionId = math.max(0, startPartitionId)
    var nextReplicaShift = if (fixedStartIndex >= 0) fixedStartIndex else rand.nextInt(arrangedBrokerList.size)
    for (_ <- 0 until nPartitions) {
      if (currentPartitionId > 0 && (currentPartitionId % arrangedBrokerList.size == 0))
        nextReplicaShift += 1
      val firstReplicaIndex = (currentPartitionId + startIndex) % arrangedBrokerList.size
      val leader = arrangedBrokerList(firstReplicaIndex)
      val replicaBuffer = mutable.ArrayBuffer(leader)
      val racksWithReplicas = mutable.Set(brokerRackMap(leader))
      val brokersWithReplicas = mutable.Set(leader)
      var k = 0
      for (_ <- 0 until replicationFactor - 1) {
        var done = false
        while (!done) {
          val broker = arrangedBrokerList(replicaIndex(firstReplicaIndex, nextReplicaShift * numRacks, k, arrangedBrokerList.size))
          val rack = brokerRackMap(broker)
          // Skip this broker if
          // 1. there is already a broker in the same rack that has assigned a replica AND there is one or more racks
          //    that do not have any replica, or
          // 2. the broker has already assigned a replica AND there is one or more brokers that do not have replica assigned
          if ((!racksWithReplicas.contains(rack) || racksWithReplicas.size == numRacks)
              && (!brokersWithReplicas.contains(broker) || brokersWithReplicas.size == numBrokers)) {
            replicaBuffer += broker
            racksWithReplicas += rack
            brokersWithReplicas += broker
            done = true
          }
          k += 1
        }
      }
      ret.put(currentPartitionId, replicaBuffer)
      currentPartitionId += 1
    }
    ret
  }

doc

  • Kafka消费组(consumer group)
  • How Partitions are split into Kafka Broker?
  • KIP-36 Rack aware replica assignment
  • How to Rebalance Topics in a Kafka Cluster
  • Kafka Partitioning…
  • kafka重新分配partition

你可能感兴趣的:(聊聊kafka的partition分配)