- 掌握大数据时代的心跳:实时数据处理的崛起
Echo_Wish
大数据大数据
掌握大数据时代的心跳:实时数据处理的崛起在大数据时代,我们每天都在生成海量的数据——从社交媒体上的点赞到物联网设备上传的传感器数据,数据无处不在。然而,仅仅存储这些数据已经无法满足现代业务的需求,“实时数据处理”已经从一项可选技术跃升为业务成功的关键所在。如何让数据在其生成的瞬间就能被分析、处理并驱动决策,这是我们今天要探讨的重点。为什么实时数据处理如此重要?想象一下这样两个场景:在线交易平台:当
- pandas常用数据格式IO性能对比
lining808
Pythonpandaspython数据分析
前言本文对pandas支持的一些数据格式进行IO(读写)的性能测试,大数据时代以数据为基础,经常会遇到操作大量数据的情景,数据的IO性能尤为重要,本文对常见的数据格式csv、feather、hdf5、jay、parquet、pickle性能进行对比。csvCSV(Comma-SeparatedValues)是一种用于存储表格数据的简单文件格式。在CSV文件中,每一行通常代表一条记录,字段(列)由逗
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- DeepSeek一键生成可视化看板
CodeJourney.
数据库算法人工智能能源
在当今数据驱动的时代,数据可视化已成为企业决策和分析的关键工具。然而,传统的数据可视化过程往往需要专业的技术知识和大量的时间成本,这对于许多非技术人员来说是一个巨大的挑战。不过,现在有了DeepSeek,这一切都变得轻松简单。本文将深入探讨DeepSeek一键生成可视化看板的强大功能,以及它如何改变我们处理数据的方式。一、数据可视化的重要性在大数据时代,数据的价值不言而喻。但原始数据往往是繁杂无序
- 第八课:Scrapy框架入门:工业级爬虫开发
deming_su
Pythonscrapy爬虫python
在当今大数据时代,数据抓取已成为信息获取的重要手段。Scrapy作为一个基于Python的开源网络爬虫框架,凭借其高效、灵活的特性,在工业级爬虫开发中占据重要地位。本文将详细介绍Scrapy框架的基本架构、工作流程、关键组件(如Spider类与ItemPipeline)以及中间件机制,并通过一个电商产品爬虫案例,展示如何使用Scrapy框架进行数据抓取。1.Scrapy架构与工作流程Scrapy架
- 【时间序列聚类】从数据中发现隐藏的模式
T-I-M
机器学习人工智能时间序列
在大数据时代,时间序列数据无处不在。无论是股票市场的价格波动、天气的变化趋势,还是用户的点击行为,这些数据都随着时间推移而产生。然而,面对海量的时间序列数据,我们如何从中提取有价值的信息?答案之一就是时间序列聚类。本文将以通俗易懂的方式,带你了解时间序列聚类的基本概念、应用场景以及实现思路,并希望能为你提供一些启发。什么是时间序列聚类?简单来说,时间序列聚类是一种将相似的时间序列归为一类的技术。它
- 使用LangChain访问个人数据第一章-简介
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序正文在大数据时代,数据价值逐渐凸显,打造定制化、个性化服务,个人数据尤为重要。要开发一个具备较强服务能力、能够充分展现个性化智能的应用程序,大模型与个人数据的对齐是一个重要步骤。作为针对大模型开发应运而生的框
- Apache Doris 实现毫秒级查询响应
随风九天
匠心数据库服务javaapacheApacheDoris
1.引言1.1数据分析的重要性随着大数据时代的到来,企业对实时数据分析的需求日益增长。快速、准确地获取数据洞察成为企业在竞争中脱颖而出的关键。传统的数据库系统在处理大规模数据时往往面临性能瓶颈,难以满足实时分析的需求。例如,一个电商公司需要实时监控销售数据以调整库存和营销策略,而传统的数据库可能需要数分钟甚至数小时才能生成报表,这显然无法满足业务需求。1.2ApacheDoris简介ApacheD
- 基于大数据架构的就业岗位推荐系统的设计与实现【java或python】—计算机毕业设计源码+LW文档
qq_375279829
大数据架构python课程设计算法
摘要随着互联网技术的迅猛发展和大数据时代的到来,就业市场日益复杂多变,求职者与招聘方之间的信息不对称问题愈发突出。为解决这一难题,本文设计并实现了一个基于大数据架构的就业岗位推荐系统。该系统通过收集、整合并分析大量求职者简历信息、企业招聘信息以及市场动态数据,运用先进的机器学习算法,为求职者提供个性化的岗位推荐服务,同时帮助企业快速定位到合适的候选人。本文将从系统设计的背景与意义、技术基础、需求分
- 数据集与云计算:云端数据集的管理与应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大数据时代的数据挑战步入21世纪,我们见证了信息技术的爆炸式增长,数据以前所未有的速度产生、存储和使用。从社交媒体互动到科学研究,从电子商务交易到物联网传感器,各行各业都被海量数据所淹没。这种数据爆炸式增长带来了前所未有的机遇和挑战。1.1.1机遇:数据驱动型决策数据的激增为企业和组织提供了前所未有的洞察力。通过分析和理解这些数据,我们可以识别趋势、预测未来行为并做出更明智的决策
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 数据安全策略与实践:从理论到落地
Echo_Wish
大数据高阶实战秘籍大数据
数据安全策略与实践:从理论到落地在大数据时代,数据早已成为企业和机构的核心资产,但随之而来的数据泄露、非法访问和滥用问题也屡见不鲜。从用户隐私到企业机密,再到国家级信息安全,无一不受到数据安全的影响。那么,如何构建高效的数据安全策略并在实际中落地实施?这是我们今天要探讨的核心话题。一、数据安全为何重要?数据泄露的影响在2021年某著名社交平台数据泄露事件中,超过5亿用户的个人信息被曝光,直接导致了
- taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析
涛思数据(TDengine)
时序数据库tdengine数据库大数据
在当今大数据时代,时序数据库的应用越来越广泛,尤其是在物联网、工业监控、金融分析等领域。TDengine作为一款高性能的时序数据库,凭借独特的存储架构和高效的压缩算法,在存储和查询效率上表现出色。然而,随着数据规模的不断增长,在保证数据安全性和存储效率的同时,如何优化CPU的资源占用,成为了一个值得深入讨论的问题。本文将探讨TDengine在数据写入与查询场景下的压缩解压与加密解密过程中对CPU资
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 大数据与网络安全讲座
黑客Jack
大数据web安全单例模式
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。挑战一:
- Elasticsearch冷热分离与索引生命周期管理
Cloud_Tech
elasticsearch大数据数据分析数据库阿里云
本文介绍在Elasticsearch集群上,通过生命周期管理ILM(IndexLifecycleManagement)功能,实现冷热数据分离的实践流程。通过本实践,您既可以实现在保证集群读写性能的基础上,自动维护集群上的冷热数据,又能通过优化集群架构,降低企业生产成本。背景信息当今大数据时代,数据时刻在更新变化。尤其是随着时间的积累,存储在Elasticsearch中的数据会越来越多,当数据达到一
- 如何使用DeepSeek进行高效数据挖掘与分析
Small踢倒coffee_氕氘氚
笔记经验分享迭代器模式
##摘要随着大数据时代的到来,数据挖掘与分析技术在各行各业中扮演着越来越重要的角色。DeepSeek作为一种先进的数据挖掘工具,能够帮助用户从海量数据中提取有价值的信息。本文将详细介绍DeepSeek的功能、使用方法及其在实际应用中的优势,旨在为用户提供一份全面的使用指南。##关键词DeepSeek、数据挖掘、数据分析、机器学习、大数据##引言###背景在当今信息爆炸的时代,数据已成为企业决策的重
- 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。ApacheHadoop和ApacheSpark是目前主流开源大数据框架。由于其易于部署、高容错性、并行计算能力强、适应数据量大、可编程、社区支持广泛等特点,大大提升了大数据应用的效率和效果。本文通过对Hado
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- 代理 IP 行业现状与未来趋势分析
跨境Kevin
tcp/ip网络web安全
随着互联网的飞速发展,代理IP行业在近年来逐渐兴起并成为网络技术领域中一个备受关注的细分行业。它在数据采集、网络营销、隐私保护等多个方面发挥着重要作用,其行业现状与未来发展趋势值得深入探讨。目前,代理IP行业呈现出以下几个显著特点。一是市场需求持续增长。在大数据时代,企业对于数据的渴望日益强烈,数据采集工作需要大量的代理IP来突破网站限制,获取全面准确的信息。同时,网络营销从业者为了精准投放广告、
- Stream流式输出:一种高效的数据处理方式
萧鼎
机器学习算法与实战python算法流式输出stream
在当今的大数据时代,数据量呈爆炸式增长,如何高效地处理这些海量数据成为了一个重要的问题。Stream流式输出作为一种新型的数据处理方式,能够实时处理数据,提高数据处理效率,因此受到了广泛的关注和应用。本文将介绍Stream流式输出的概念、优点、应用场景以及实现方式。一、Stream流式输出的概念Stream流式输出是一种数据处理方式,它将数据以流的形式进行传输和处理。在这种处理方式中,数据不再是集
- Spark技术系列(一):初识Apache Spark——大数据处理的统一分析引擎
数据大包哥
#Spark大数据
Spark技术系列(一):初识ApacheSpark——大数据处理的统一分析引擎1.背景与核心价值1.1大数据时代的技术演进MapReduce的局限性:磁盘迭代计算、中间结果落盘导致的性能瓶颈Spark诞生背景:UCBerkeleyAMPLab实验室为解决复杂迭代计算需求研发(2010年开源)技术定位:基于内存的通用分布式计算框架(支持批处理、流计算、机器学习、图计算等)1.2Spark内置模块S
- 从0-1学习Mysql第七章: 分区与分库分表
一小路一
掌握Go语言:编程世界的进阶钥匙学习mysql数据库后端面试
第七章:分区与分库分表在大数据时代,单个数据库或表往往难以应对海量数据带来的存储、查询和维护压力。分区、分表和分库分表技术正是在这种背景下应运而生。它们通过将数据进行逻辑或物理拆分,实现数据管理的灵活性和系统性能的优化。1.分区表的概念与使用场景1.1什么是分区表?分区表是将一个大表按照某种规则(如范围、列表、哈希等)划分为多个逻辑子表的技术。虽然物理上数据仍存储在同一张表内,但查询时数据库可以根
- HBase:大数据时代的“超级数据库”
狮歌~资深攻城狮
hbase大数据
HBase:大数据时代的“超级数据库”你是不是也被数据淹没过?大家有没有这样的经历,手机里存了成千上万张照片,每次想找某一张特定的照片时,都得翻半天?或者在工作中面对堆积如山的数据报表,感觉像是在大海捞针。今天我们要聊的HBase,就是为了解决这种“数据洪流”的问题。什么是HBase?HBase是一个分布式的、面向列的开源数据库,它基于Google的Bigtable论文设计而成。简单来说,HBas
- 深入探索Spark MLlib:大数据时代的机器学习利器
concisedistinct
人工智能mllibspark-mlSparkMLlib大数据机器学习
随着大数据技术的迅猛发展,机器学习在各行各业的应用日益广泛。ApacheSpark作为大数据处理的利器,其内置的机器学习库MLlib(MachineLearningLibrary)提供了一套高效、易用的工具,用于处理和分析海量数据。本文将深入探讨SparkMLlib,介绍其核心功能和应用场景,并通过实例展示如何在实际项目中应用这些工具。一、SparkMLlib概述1.什么是SparkMLlib?S
- 云原生时代的分布式文件系统设计与实现
ITPUB-微风
云原生
在云计算和大数据时代,高效的数据管理和访问对于企业来说至关重要。Alluxio,一个开源的分布式文件系统,应运而生,为大数据和人工智能应用提供了革命性的解决方案。由HaoyuanLi在加州大学伯克利分校AMPLab启动,Alluxio如今已成为全球众多大型科技公司(如Facebook、Uber、Microsoft等)的关键组件。Alluxio的历史与发展Alluxio最初是一个名为Tachyon的
- IP代理工具在企业数据采集中拥有哪些优势?
ip地址代理服务器采集网络爬虫
随着大数据时代的到来,数据已成为企业决策和运营的重要支撑。然而,在进行数据采集时,企业往往会面临诸多挑战,如网络限制、数据访问权限等问题。这时,IP代理工具便成为了一种有效的解决方案。本文将详细探讨IP代理工具在企业数据采集中所具备的优势。一、突破地理限制,拓宽数据采集范围IP代理工具通过提供虚拟IP地址,使企业能够轻松突破地理限制,访问目标网站。这意味着企业可以更加灵活地收集全球范围内的数据,从
- 使用容器部署ELK:适用于生产环境的架构
ExogFix
elk架构jenkins
在当今的大数据时代,日志管理和实时监控对于企业的成功至关重要。Elasticsearch、Logstash和Kibana(通常被称为ELK堆栈)是一套流行的开源工具,用于实时日志聚合、分析和可视化。通过使用容器化技术,我们可以轻松地部署和管理ELK堆栈,并为生产环境提供可靠的日志分析解决方案。本文将详细介绍如何使用Docker容器部署ELK堆栈,并提供相应的源代码示例。架构概述我们的ELK堆栈部署
- 银行数据类系统建设
奔跑的白鸥
银行数据应用数据仓库spark大数据
数据仓库建设数据仓库的概念数据仓库是大批量数据的存储系统,在如今PB级数据量的大数据时代,传统数据库由于数据量的限制,无法存储如此庞大的数据量,因此对于需求海量数据的机构大都会将数据存储在数据仓库中,用以取数和分析。数据仓库的分层数据仓库一般会从业务源系统取数,存储在ODS层。这一层存储的都是颗粒度最细的明细数据,由于直接从源系统取数,所以这一层的数据大多是缺乏加工处理的脏数据。再上层是主题数据层
- 大数据可视化设计实用技巧全攻略
UI设计兰亭妙微
信息可视化数据分析数据挖掘
在大数据时代,数据可视化设计已成为将复杂数据转化为直观洞察的关键。下面就为大家分享一些实用技巧,助你打造出出色的数据可视化作品。一、选择合适的图表类型不同类型的图表适用于不同的数据展示需求。柱状图擅长比较数据大小,折线图则能清晰呈现数据随时间的变化趋势,而饼图用于展示各部分占比。例如,在展示不同产品的销量对比时,柱状图一目了然;分析股票价格的长期走势,折线图更为合适;呈现市场份额分布,饼图效果最佳
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo