- sentinel 微服务流量治理工具,使用初步
RR1335
微服务Gateway#Springsentinel微服务架构
官网入口introduction|Sentinel这是阿里巴巴的服务,中文支持很好maven配置入口https://mvnrepository.com/artifact/com.alibaba.csp/sentinel-corecom.alibaba.cspsentinel-core1.8.6sentinel控制台需要引入的依赖com.alibaba.cspsentinel-transport-s
- lesson1:Python入门知识
你的电影很有趣
python开发语言
目录文章目录前言一、python的语言特性1、语法简练2、解释型语言2.1解释型语言特点2.2编译型语言特点2.3执行效率比较3、标准库/第三方库4、支持面向对象二、windows常用命令三、程序的基本组成1、输入input2、运算3、输出print总结前言开始学习python的第一课一、python的语言特性1、语法简练变量不需要声明类型2、解释型语言2.1解释型语言特点需要解释器通过解释器逐行
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- Paper Reading《SoK: Prudent Evaluation Practices for Fuzzing》
小苑同学
安全性测试网络安全
论文链接:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646824IEEESSP20241Introduction(背景意义)模糊测试是发现软件漏洞的高效方法,被Meta、Google等企业广泛应用,且大量学术研究持续改进其技术(如覆盖反馈、领域扩展)。过去六年(2018-2023)中,顶级安全与软件工程会议上发表了超280
- 【图像去噪】论文精读:Linear Combinations of Patches Are Unreasonably Effective for Single-Image Denoising
十小大
深度学习图像处理计算机视觉图像去噪人工智能
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言AbstractI.INTRODUCTIONII.APARAMETRICVIEWOFTWO-STEPNON-LOCALMETHODSFORSINGLE-IMAGEDE
- Pin 3.0 User Guide
往事也加
PinPinIntel
========================================================================================Introduction========================================================================================Pinisatoolfo
- JSON简介及其应用
Jackson@ML
MongoDBJavaScriptNode.jsjsonJavaScriptNode.js
JSON简介及其应用
[email protected]的概念JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式,采用键值对(key-value)的方式组织数据,语法类似JavaScript对象,易于人阅读和机器解析。2.JSON的作用JSON有几方面的作用如下:•在前后端数据交互中传
- Qt开发:QCustomPlot
倔强老吕
qtQCustomPlot
【官方网站】:QtPlottingWidgetQCustomPlot-IntroductionQCustomPlot是一个用于绘制图形的QtC++库,它使得在Qt程序中创建高质量的2D图表变得简单。这个库非常适合用来展示实时数据,同时它也支持多种输出格式,包括打印质量的矢量图形如PDF文件。以下是QCustomPlot的一些主要特性:提供丰富的2D绘图类型,比如折线图、散点图、柱状图等。支持多轴图
- 星际争霸多智能体挑战赛(SMAC)
资源存储库
多智能体强化学习人工智能
目录TheStarCraftMulti-AgentChallenge星际争霸多智能体挑战赛Abstract摘要1Introduction1引言2RelatedWork2相关工作3Multi-AgentReinforcementLearning3多智能体强化学习Dec-POMDPs12-POMDPs(十二月-POMDP)Centralisedtrainingwithdecentralisedexec
- PettingZoo:多智能体强化学习的标准API
资源存储库
多智能体强化学习人工智能深度学习
PettingZoo:AStandardAPIforMulti-AgentReinforcementLearningPettingZoo:多智能体强化学习的标准API目录Abstract摘要1Introduction1介绍2BackgroundandRelatedWorks2背景及相关工作2.1PartiallyObservableStochasticGamesandRLlib2.1部分可观察随机
- (转)优秀的 python 机器学习库
patrick75
python机器学习python机器学习
优秀的python机器学习库IntroductionThereisnodoubtthatneuralnetworks,andmachinelearningingeneral,hasbeenoneofthehottesttopicsintechthepastfewyearsorso.It’seasytoseewhywithallofthereallyinterestinguse-casestheys
- 26、A* Algorithm: An In-depth Guide to Optimal Pathfinding
tree
C#搜索设计模式精解A*AlgorithmPathfindingHeuristicFunction
A*Algorithm:AnIn-depthGuidetoOptimalPathfinding1.IntroductiontoA*AlgorithmA(pronounced“Astar”)isapowerfulalgorithmwidelyusedforpathfindingandgraphtraversal.Itcombinestheadvantagesofbothuniform-costsea
- UWB工作原理的简明介绍:Introduction to Impulse Radio UWB Seamless Access Systems(1):脉冲;超宽带;测距;定位
Ankie(资深技术项目经理)
无线网络技术UWB原理和实操UWBairtag脉冲超宽带定位测距无线通信
Ankie的评论:UWB全称ImpulseRadioUltra-Wideband(IR-UWB)systems,脉冲式超宽带系统。超带宽意思是500MHZ,远远超过蓝牙BT的1m,2mhz和WiFi的20m-32mhz。脉冲式:不是持续输出,而是间断的喷射。早期UWB努力集中在使用正交频分复用(OFDM)和直接序列扩频(DSSS)的高数据速率通信上。后来,重点才转向测距和地理定位。2019年后由于
- 量学云讲堂王岩江宇龙2025年第58期视频 主课正课系统课+收评
wwzrsw2
炒股音视频
量学云讲堂王岩江宇龙2025年第58期视频主课正课系统课+收评资源简介:课程目录:江宇龙课程31枫林阳-股票走势中多空必争的关键要地(1).mp432枫林阳-关键要地的直观表现之画线标准.mp433枫林阳-提纲举领之量线学习的要点纲要.mp434枫林阳-主力攻防量线的体系和搏动脉象.mp4主课第一课:伏击涨停最精准的测庄标尺.mp4第二课:伏击涨停的法宝.mp4第三课:伏击涨停的动力源.mp4第四
- 《Learning to See in the Dark》论文超详细解读(翻译+精读)
小西柚code
论文阅读深度学习计算机视觉人工智能
前言最近读到《LearningtoSeeintheDark》这篇论文,觉得很有意思,所以在这里记录一下。目录前言ABSTRACT—摘要翻译精读一、INTRODUCTION—简介翻译精读二、RELATEDWORKS—相关工作2.1Imagedenoising—图像降噪翻译精读2.2Low-lightimageenhancement—低光图像增强翻译精读2.3Noisyimagedatasets—带噪
- A Survey on Deep Learning Techniques Applied to medical image analysis
AI天才研究院
AI人工智能与大数据自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.BackgroundandKeyConceptsIntroductionKeyTerms&Concepts3.CoreTechnicalConceptsandOperationsConvolutionalNeuralNetwork(CNN)StructureofaCNNLayerBuildingBlocksofCNNConvolutionalLaye
- OpenRisc-54-play with OpenRISC based atlys board
Rill
OpenRiscopenrisc
1.OpenRISC1200softprocessorIntroductionTheOpenRISC1200(OR1200)isasynthesizableCPUcoremaintainedbydevelopersatOpenCores.org.TheOR1200designisanopensourceimplementationoftheOpenRISC1000RISCarchitecture.
- 中级4 Web组件和WebView 习题答案 <HarmonyOS第一课>
ideal树叶
鸿蒙习题鸿蒙harmonyos
一、判断题1.Web组件提供具有网页显示能力,@ohos.web.webview提供web控制能力。正确(True)错误(False)回答正确A2.同一页面的多个Web组件,必须绑定不同的WebviewController。正确(True)错误(False)回答正确A二、单选题1.下列关于Web组件的属性,描述错误的是?A.fileAccess设置是否开启应用中文件系统的访问。$rawfile(f
- Chisel芯片开发入门系列 -- 1. Chisel Introduction
ChipCamp
Chisel芯片开发入门系列scala青少年编程fpga开发dsp开发arm开发
ChiselIntroductionChisel(ConstructingHardwareInaScalaEmbeddedLanguage)isahardwareconstructionlanguageembeddedinthehigh-levelprogramminglanguageScala.Chiselisalibraryofspecialclassdefinitions,predefine
- 大模型——MCP Server 开发实战指南(Python版)
不二人生
大模型python大模型人工智能MCP
MCPServer开发实战指南(Python版)资料MCP官方文档https://modelcontextprotocol.io/introduction各个clients对MCP的支持情况https://modelcontextprotocol.io/clientsMCPPythonSDK:MCPClient和Server官方SDKhttps://github.com/modelcontextp
- 【LLM安全】A Survey on Large Language Model (LLM) Security and Privacy- The Good, the Bad, and the Ugly
1.IntroductionTheGood:LLMs在代码安全和数据安全与隐私方面都做出了贡献。在代码安全的背景下,LLMs已经被用于代码(例如,安全编码、测试用例生成、脆弱代码检测、恶意代码检测、代码修复等)的整个生命周期。在数据安全和隐私方面,LLMs已被应用于确保数据完整性、数据机密性、数据可靠性和数据可追溯性。大多数研究人员发现基于LLM的方法优于传统最先进的方法。TheBad:我们将攻击
- Turkey HSD检验法/W法
weixin_30746117
pythonr语言matlab
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share医药统计项目联系QQ:231469242python2.7#-*-cod
- OpenAI GPT LLMs 高级提示词工程方法汇总
lichunericli
人工智能自然语言处理prompt
原文地址:AnIntroductiontoPromptEngineeringforOpenAIGPTLLMsGithub:Prompt-Engineering-Intro2023年3月2日提示工程指南|PromptEngineeringGuideNaive提示词:带有提示的情感分类器prompt='''DecidewhetheraTweet'ssentimentispositive,neutral
- 鸿蒙应用开发快速学习指南(初级篇-1 HarmonyOS简介)
一颗大宝贝
ArkTs快速学习harmonyos华为
应用程序框架基础第一课:HarmonyOS简介本篇是初级认证考试考纲的第一课,以我们对当代教科书和一些课的认知来看,从标题,我们很容易就能猜到这堂课的主要内容:这个框架是什么,为什么要用,用它有什么好处,它能解决什么问题,以及它怎么遥遥领先于同行(不是)学习方法由于作者有其他相关经验,所以直接从习题开始看起,若是0经验的小伙伴们,建议还是先看看课跟课件再看习题。学习过程首先判断题:“一次开发,多端
- error: linker `link.exe` not found
悟初境
rustrustlinker
Rust在windows下第一课,编译报错:cargobuildCompilingrsj-kvv0.1.0(D:\workspace\git\rsj-kv)error:linker`link.exe`notfound|=note:系统找不到指定的文件。(oserror2)note:themsvctargetsdependonthemsvclinkerbut`link.exe`wasnotfound
- 【图像去噪】论文精读:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction1.1.LearningdenoisingNNwithouttruthimages1.2.Discussionsonbli
- Excel数据分析实战之开宗明义: Excel与数据分析实战
爱编程的喵喵
Excel数据分析实战excel数据分析数据挖掘
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Excel数据分析实战的第一课:Ex
- 人工智能期末复习第一弹:Introduction of Artificial intelligence
写代码的橘子n
人工智能
下面是知识点总结:SomedefinitionsofAIorganizedintofourcategories1.Systemsthatthinklikehumans.2.Systemsthatthinkrationally.3.Systemsthatactlikehumans.4.SystemsthatactrationallyThefourdefinitionsabovevaryalongtw
- MapReduce 程序详解
Hadoop的第一课总是MapReduce,但是往往我们每次都是使用自带的例子跑一遍MapReduce程序,今天总与自己写了一个完整的程序。技术有限,多多指教。1.导Jar包,将Hadoop的Jar导入到你的工程2.开始写自己的主类,分为3个类。第一个类WordcountMapperpackagecn.itcast.bigdata.mr.wcdemo;importjava.io.IOExcepti
- 《A Gentle Introduction to Graph Neural Networks》
欧先生^_^
人工智能
这篇《AGentleIntroductiontoGraphNeuralNetworks》是一篇非常经典且对新手友好的图神经网络入门文章。我将为你深入浅出地解读它的核心思想、关键概念和重要性。这篇论文(更像是一篇博客文章或教程)的主要目的不是提出新的模型,而是系统性地、直观地解释GNN到底是什么,为什么需要它,以及它是如何工作的。我会将解读分为以下几个部分:核心动机:为什么我们需要GNN?核心思想:
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =