android异步消息机制,源码层面彻底解析(一)

本人进行android开发时间不长,写此博客主要是为了巩固所学知识。

Handler、Message、Loopler、MessageQueen

首先看一下我们平常使用Handler的一个最常见用法。

Handler handler =new Handler(){
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            //这里进行一些UI操作等处理
        }
         
         new Thread(new Runnable() {
            @Override
            public void run() {
                Message message = Message.obtain();
                
                handler.sendMessage(message);
            }
        });
    };

看一下handler的构造函数的源码

public Handler() {
   this(null, false);
}
//他会调用本类中的如下构造函数
public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

看到当mLooper == null时会抛一个“Can't create handler inside thread that has not called Looper.prepare()"这个异常,所以我们首先需要调用Looper.prepare()

public static void prepare() {
        prepare(true);
    }
//将looper保存到ThreadLocal中,这里可以把ThreadLocal理解为一个以当前线程为键的Map,所以一个线程中只会有一个looper
private static void prepare(boolean quitAllowed) {
   if (sThreadLocal.get() != null) {
      throw new RuntimeException("Only one Looper may      be created per thread");
        }
   sThreadLocal.set(new Looper(quitAllowed));
}

接下来我们看handler.sendMessage(message)这个方法,从字面意思就是将信息发送出去。一般sendMessage方法最终都会调用sendMessageAtTime(Message msg, long uptimeMillis)这个方法

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

我们看到最终会执行enqueueMessage(queue, msg, uptimeMillis)这个方法

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

最终又会调用MessageQueen中的queue.enqueueMessage(msg, uptimeMillis)这个方法

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

MessageQueen虽然名字是一个队列,但实质上他是一个单向链表,这个结构能快速进行插入和删除操作。从上面源码可以看出来,主要是按照�发送消息的时间顺序将msg插入到消息队列中。接下来我们就需要从消息队列中取出msg了。这时候就需要调用Looper.loop()方法。

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            //从消息队列中取出msg
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            //将msg交由handler处理
            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

可以看到Looper.loop()方法通过在一个死循环中调用Message msg = queue.next()将消息不断的从消息队列中取出来。queue.next()方法的作用就是从消息队列中取msg。现在msg已经取出来,下一步就是怎样将他传递给handler了对吧。所以在死循环中还有一个方法msg.target.dispatchMessage(msg) ,而msg.target就是handler,在handler的enqueueMessage()方法中传入的msg.target = this,接下来就看看handler的dispatchMessage()方法

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

如果我们采用无参的构造函数创建handler,msg.callback与mCallback均为空,所以我们会调用handleMessage(msg),这样文章开头的那个实例整个流程就走完了,handleMessage(msg)会在handler所在的线程中执行。

//当我们通过这种方式创建handler时,dispatchMessage中的mCallback就不为null
 public Handler(Callback callback) {
        this(callback, false);
 }
 //Callback是一个接口,里面正好也有我们需要的handleMessage(Message msg)
 public interface Callback {
     public boolean handleMessage(Message msg);
 }
//当我们调用handler.post()方法执行异步任务时
    public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
//这个方法中我们看到给m.callback赋值了,就是我们传入的runnable接口
    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }
//最后在handleCallback方法中我们执行了它的run方法
    private static void handleCallback(Message message) {
        message.callback.run();
    }

总结

  • 梳理整个执行过程
    1.调用Looper.prepare()方法,这是创建handler所必须的。在主线程中由于ActivityThread已经创建过looper,所以在主线程中创建handler以前无需创建looper。
    2.通过调用handler.sendMessage(message)方法最终会执行enqueueMessage(queue, msg, uptimeMillis),enqueueMessage又会调用MessageQueen的queue.enqueueMessage(msg, uptimeMillis),这样消息就会被添加到消息队列中。
    3.调用Looper.loop()方法在死循环中执行Message msg = queue.next(),不断的将msg从消息队列中取出来,同时执行msg.target.dispatchMessage(msg),将消息传递给handler,由handler来处理,如我们调用的handleMessage就是处理消息的方式之一。
  • 异步处理机制流程图


    android异步消息机制,源码层面彻底解析(一)_第1张图片
    这里写图片描述
  • 从其他线程访问 UI 线程的几种方式
    Android 提供了几种途径来从其他线程访问 UI 线程。以下列出了几种有用的方法:
    • Activity.runOnUiThread(Runnable)
    • View.post(Runnable) 这里的view就是我们需要改变的ui控件
    • View.postDelayed(Runnable, long)
    • Handler.post(Runnable, long)
    但是,随着操作日趋复杂,这类代码也会变得复杂且难以维护。 要通过工作线程处理更复杂的交互,可以考虑在工作线程中使用 Handler 处理来自 UI 线程的消息。当然,最好的解决方案或许是扩展 AsyncTask 类,此类简化了与 UI 进行交互所需执行的工作线程任务。

你可能感兴趣的:(android异步消息机制,源码层面彻底解析(一))