python进阶:第五章(操作数据)

问题一:如何读写csv数据?

我们获得了雅虎网站平安银行2017年的股市信息,以csv数据格式存储:

Date,Open,High,Low,Close,Volume,Adj Close
2017/4/24,8.97,8.98,8.89,8.93,39499500,8.93
2017/4/21,8.92,8.99,8.9,8.97,32540800,8.97
2017/4/20,8.9,8.94,8.89,8.92,43763000,8.92
2017/4/19,9.03,9.04,8.9,8.91,79966800,8.91
2017/4/18,9.09,9.1,9.05,9.05,33537600,9.05
2017/4/17,9.08,9.11,9.05,9.1,53189200,9.1
2017/4/14,9.11,9.12,9.06,9.08,49050000,9.08
2017/4/13,9.11,9.14,9.1,9.12,35744200,9.12
2017/4/12,9.16,9.17,9.1,9.12,45533600,9.12

现将交易中成交量超过50000000的记录存储到另一个csv文件中。

解决方案:
使用标准库中的csv模块,可以使用其中reader和writer完成csv文件读写。

In [1]: import csv 

In [2]: csv.reader?
Docstring:
csv_reader = reader(iterable [, dialect='excel']
                        [optional keyword args])
    for row in csv_reader:
        process(row)

The "iterable" argument can be any object that returns a line
of input for each iteration, such as a file object or a list.  The
optional "dialect" parameter is discussed below.  The function
also accepts optional keyword arguments which override settings
provided by the dialect.

The returned object is an iterator.  Each iteration returns a row
of the CSV file (which can span multiple input lines).
Type:      builtin_function_or_method

In [3]: csv.writer?
Docstring:
csv_writer = csv.writer(fileobj [, dialect='excel']
                            [optional keyword args])
    for row in sequence:
        csv_writer.writerow(row)

    [or]

    csv_writer = csv.writer(fileobj [, dialect='excel']
                            [optional keyword args])
    csv_writer.writerows(rows)

The "fileobj" argument can be any object that supports the file API.
Type:      builtin_function_or_method

使用writer()和reader()函数,操作csv文件

In [3]: with open('tab.csv','rt') as fin:
   ...:     cin = csv.reader(fin) 
   ...:     values = [ row for row in cin] 
   ...:     

In [4]: values[0] 
Out[4]: ['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close']

In [5]: values = values[1:]

In [6]: values[0][5]
Out[6]: '39499500'

In [7]: with open('tab.csv','rt') as fin:
   ...:     cin = csv.reader(fin)
   ...:     values = [ row for row in cin] 
   ...:     with open('tab2.csv','wt') as fin2:
   ...:         writer = csv.writer(fin2)
   ...:         headers = values[0] 
   ...:         writer.writerow(headers) 
   ...:         for row in values[1:]:
   ...:             if int(row[5]) >= 50000000:
   ...:                 writer.writerow(row) 
   ...:                 

In [8]: cat tab2.csv 
Date,Open,High,Low,Close,Volume,Adj Close
2017/4/19,9.03,9.04,8.9,8.91,79966800,8.91
2017/4/17,9.08,9.11,9.05,9.1,53189200,9.1
2017/4/11,9.17,9.19,9.09,9.15,61243700,9.15
2017/4/7,9.19,9.22,9.17,9.2,51484400,9.2
2017/3/31,9.08,9.18,9.08,9.17,63312100,9.17
......

问题二:如何读写json数据?

问题内容:在python中如何读写json数据?

解决方案:使用标准库中的json模块,其中loads,dumps函数可以完成json数据的读写。

In [1]: import json 

In [2]: json.       
              json.decoder         json.encoder         json.JSONEncoder     json.scanner         
              json.dump            json.JSONDecodeError json.load                                 
              json.dumps           json.JSONDecoder     json.loads

In [2]: l = [1,2,"abc",{"age":13,"name":"Bob"}]

In [3]: json.dumps(l) 
Out[3]: '[1, 2, "abc", {"age": 13, "name": "Bob"}]'

In [4]: d = {'b':None,'a':5,'c':'abc'} 

In [5]: json.dumps(d) 
Out[5]: '{"b": null, "a": 5, "c": "abc"}'

In [6]: json.dumps?
Signature: json.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

我们发现,在生成的json串中,每个 ','后面都有一个空格,我们可以修改dumps()函数中的separators参数,指定分隔符不带空格。

In [7]: json.dumps(l,separators=[',' , ':']) 
Out[7]: '[1,2,"abc",{"age":13,"name":"Bob"}]'

我们还可以对输出的结果按照键排序,通过参数sort_keys

In [8]: json.dumps(d,sort_keys=True) 
Out[8]: '{"a": 5, "b": null, "c": "abc"}'

下面我们使用loads()函数将json格式转化为python中的数据格式。

In [9]: l2 = json.loads('[1, 2, "abc", {"age": 13, "name": "Bob"}]')

In [10]: l2
Out[10]: [1, 2, 'abc', {'age': 13, 'name': 'Bob'}]

In [11]: l2[0] 
Out[11]: 1

In [12]: d2 = json.loads('{"b": null, "a": 5, "c": "abc"}')  

In [13]: d2 
Out[13]: {'a': 5, 'b': None, 'c': 'abc'}

函数load()和dump()操作的是文件:

In [14]: with open('demo.json','wt') as f:
    ...:     json.dump(l,f) 
    ...:     

In [15]: cat demo.json
[1, 2, "abc", {"age": 13, "name": "Bob"}]

问题三:如何解析简单的xml文档?

问题内容:python中如何解析xml文档?
解决方案:使用标准库中的xml.etree.ElementTree,其中的parse函数可以解析xml文档。

In [1]: from xml.etree.ElementTree import parse 

In [2]: parse?
Signature: parse(source, parser=None)
Docstring:
Parse XML document into element tree.

*source* is a filename or file object containing XML data,
*parser* is an optional parser instance defaulting to XMLParser.

Return an ElementTree instance.
File:      /usr/local/lib/python3.5/xml/etree/ElementTree.py
Type:      function

In [3]: f = open("demo.xml")

In [4]: et = parse(f) 

In [5]: root = et.getroot()

In [6]: root
Out[6]: 

In [7]: root.tag
Out[7]: 'breakfast_menu'

In [8]: root.attrib
Out[8]: {}

In [9]: root.              
              root.append      root.findall     root.getiterator root.iterfind    root.remove      
              root.clear       root.findtext    root.insert      root.itertext    root.set         
              root.extend      root.get         root.items       root.keys                         
              root.find        root.getchildren root.iter        root.makeelement

我们根据上面的函数,可以操作xml数据。
find()和findall()方法只能查找当前节点的字节点,不过当我们使用iter()方法的时候,可以遍历所有子节点。

问题四:如何构建xml文档?

如何将其它文档转化为xml文旦。
解决方案:使用标准库中的xml.etree.ElementTree,构建ElementTree,使用write方法写入文件。

In [1]: from xml.etree.ElementTree import Element,ElementTree 

In [2]: from xml.etree.ElementTree import tostring 

tostring可以查看转化为xml格式后的样式

添加跟节点
In [3]: e = Element('Data') 

In [4]: e.tag
Out[4]: 'Data'

为节点设置属性
In [5]: e.set('name','abc') 

In [6]: tostring(e) 
Out[6]: b''

为节点设置文本值
In [7]: e.text = '123' 

In [8]: tostring(e) 
Out[8]: b'123'

新增两个节点
In [9]: e2 = Element('Row') 

In [10]: e3 = Element('Open') 

In [11]: e3.text = '8.80' 

将e3设置为e2的子节点
In [12]: e2.append(e3) 

In [13]: tostring(e2) 
Out[13]: b'8.80'

In [14]: e.text = None 

将e2设置为e的字节点
In [15]: e.append(e2) 

In [16]: tostring(e) 
Out[16]: b'8.80'

创建ElementTree元素用于写入文件,传入的参数是根元素
In [17]: et = ElementTree(e) 

使用write()函数,将字符串写入到文件
In [18]: et.write('demo2.xml') 

In [19]: cat demo2.xml
8.80

我们将之前的股票交易转化为xml格式:

In [50]: from xml.etree.ElementTree import Element,ElementTree 

In [51]: import csv 

该函数将输出的xml格式规范化
In [52]: def pretty(e,level=0):
    ...:     if len(e) > 0:
    ...:         e.text = '\n' + '\t' * (level + 1) 
    ...:         for child in e :
    ...:             pretty(child,level + 1)
    ...:         child.tail = child.tail[:-1] 
    ...:     e.tail = '\n' + '\t' * level
    ...:     

In [53]: def csvToXml(fname): 
    ...:     with open(fname,'rt') as f :
    ...:         reader = csv.reader(f) 
    ...:         values = [ row for row in reader]
    ...:         headers =  values[0] 
    ...:         root = Element('Data') 
    ...:         for row in values[1:]:
    ...:             eRow = Element('Row')
    ...:             root.append(eRow)
    ...:             for tag , text in zip(headers,row):
    ...:                 e = Element(tag) 
    ...:                 e.text = text 
    ...:                 eRow.append(e)
    ...:         pretty(root) 
    ...:         return ElementTree(root) 
    ...:     

In [54]: et = csvToXml('tab.csv')

In [55]: et.write("pay.xml") 

问题五:如何读写excel文件

问题内容:数据格式为xls,xlsx,是一种常用的电子表格。小学某班级成绩,记录在excel文件中:
姓名 语文 数学 外语
李磊 95 99 96
韩梅 98 100 93
张峰 94 95 95
......
利用python读写excel,添加“总分”列,计算每人总分。

解决方案:
使用第三方库xlrd和xlwt,这两个库分别用于excel读和写。

之后有时间补充该内容:
相关之前的文章http://www.jianshu.com/p/32d6b528d5c5

你可能感兴趣的:(python进阶:第五章(操作数据))